< KAIST 김재철AI대학원 최재식 교수 >
최근 텍스트 기반 이미지 생성 모델은 자연어로 제공된 설명만으로도 고해상도·고품질 이미지를 자동 생성할 수 있다. 하지만, 대표적인 예인 스테이블 디퓨전(Stable Diffusion) 모델에서 ‘창의적인’이라는 텍스트를 입력했을 경우, 창의적인 이미지 생성은 아직은 제한적인 수준이다. KAIST 연구진이 스테이블 디퓨전(Stable Diffusion) 등 텍스트 기반 이미지 생성 모델에 별도 학습 없이 창의성을 강화할 수 있는 기술을 개발해, 예컨대 뻔하지 않은 창의적인 의자 디자인도 인공지능이 스스로 그려낼 수 있게 됐다.
우리 대학 김재철AI대학원 최재식 교수 연구팀이 네이버(NAVER) AI Lab과 공동 연구를 통해, 추가적 학습 없이 인공지능(AI) 생성 모델의 창의적 생성을 강화하는 기술을 개발했다.
< NAVER AI Lab 이가영 연구원, KAIST 김재철AI대학원 권다희 박사과정, KAIST 김재철AI대학원 한지연 박사과정, NAVER AI Lab 김준호 연구원 >
최 교수 연구팀은 텍스트 기반 이미지 생성 모델의 내부 특징 맵을 증폭해 창의적 생성을 강화하는 기술을 개발했다. 또한, 모델 내부의 얕은 블록들이 창의적 생성에 중요한 역할을 한다는 것을 발견하고, 특징 맵을 주파수 영역으로 변환 후, 높은 주파수 영역에 해당하는 부분의 값을 증폭하면 노이즈나 작게 조각난 색깔 패턴의 형태를 유발하는 것을 확인했다. 이에 따라, 연구팀은 얕은 블록의 낮은 주파수 영역을 증폭함으로써 효과적으로 창의적 생성을 강화할 수 있음을 보였다.
연구팀은 창의성을 정의하는 두 가지 핵심 요소인 독창성과 유용성을 모두 고려해, 생성 모델 내부의 각 블록 별로 최적의 증폭 값을 자동으로 선택하는 알고리즘을 제시했다.
개발된 알고리즘을 통해 사전 학습된 스테이블 디퓨전 모델의 내부 특징 맵을 적절히 증폭해 추가적인 분류 데이터나 학습 없이 창의적 생성을 강화할 수 있었다.
< 그림 1. 개발팀에서 연구한 방법론 개요. 사전 학습된 생성 모델의 내부 특징맵을 고속푸리에변환을 통해 주파수 영역으로 변환 후, 낮은 주파수 영역의 특징맵을 증폭, 다시 고속푸리에역변환을 통해 특징공간으로 재변환하여 이미지를 생성한다. >
연구팀은 개발된 알고리즘을 사용하면 기존 모델 대비 더욱 참신하면서도 유용성이 크게 저하되지 않은 이미지를 생성할 수 있음을 다양한 측정치를 활용해 정량적으로 입증했다.
특히, 스테이블 디퓨전 XL(SDXL) 모델의 이미지 생성 속도를 대폭 향상하기 위해 개발된 SDXL-Turbo 모델에서 발생하는 모드 붕괴 문제를 완화함으로써 이미지 다양성이 증가한 것을 확인했다. 나아가, 사용자 연구를 통해 사람이 직접 평가했을 때도 기존 방법에 비해 유용성 대비 참신성이 크게 향상됨을 입증했다.
공동 제1 저자인 KAIST 한지연, 권다희 박사과정은 "생성 모델을 새로 학습하거나 미세조정 학습하지 않고 생성 모델의 창의적인 생성을 강화하는 최초의 방법론ˮ이라며 "학습된 인공지능 생성 모델 내부에 잠재된 창의성을 특징 맵 조작을 통해 강화할 수 있음을 보였다ˮ 라고 말했다.
이어 “이번 연구는 기존 학습된 모델에서도 텍스트만으로 창의적 이미지를 손쉽게 생성할 수 있게 됐으며, 이를 통해 창의적인 상품 디자인 등 다양한 분야에서 새로운 영감을 제공하고, 인공지능 모델이 창의적 생태계에서 실질적으로 유용하게 활용될 수 있도록 기여할 것으로 기대된다”라고 밝혔다.
< 그림 2. 개발팀에서 연구한 방법론의 적용 사례. 다양한 Stable Diffusion 모델에서 기존 생성 대비 생성 대상의 의미를 유지하면서도 참신한 이미지를 생성함. >
KAIST 김재철AI대학원 한지연 박사과정과 권다희 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)’에서 6월 15일 발표됐다.
※논문명 : Enhancing Creative Generation on Stable Diffusion-based Models
※DOI: https://doi.org/10.48550/arXiv.2503.23538
한편 이번 연구는 KAIST-네이버 초창의적 AI 연구센터, 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능, AI 연구거점 프로젝트, 점차 강화되고 있는 윤리 정책에 발맞춰 유연하게 진화하는 인공지능 기술 개발 연구 및 KAIST 인공지능 대학원 프로그램과제의 지원을 받았고 방위사업청과 국방과학연구소의 지원으로 KAIST 미래 국방 인공지능 특화연구센터에서 수행됐다.
우리 대학 수리과학과 임미경 교수가 AIP 2025(12th Applied Inverse Problems Conference)에서 ‘기하함수론(Geometric function theory)에 기반한 역문제 연구’를 주제로 기조강연(plenary talk)을 진행했다. AIP는 응용수학 분야의 대표적 국제학술대회 중 하나로, 국제역문제학회(IPIA, Inverse Problems International Association)가 주관하며 격년으로 열린다. 이번 학회는 7월 28일부터 8월 1일까지 브라질 리우데자네이루에서 개최됐으며, 기조강연, 미니심포지움 40여 개, 포스터 세션으로 구성됐다. IPIA는 2007년 시작됐으며 2022년 독일에서 공식 등록된 비영리 국제학술단체로 재창립됐다. 임미경 교수는 당시 재창립 집행위원으로 활동했다. 이번 강연에서는 임 교수 연구팀이 지난 10여 년간 수행해 온 전기/탄성방정식 경계치 문제에 대한 새로운
2025-08-12우리 대학은 ‘2025 APEC 청소년 STEM* 공동연구 및 경진대회’에 참여한 10개국 28명의 청소년 연구자와 30여 명의 전문가를 대상으로 한 글로벌 과학교류 프로그램,‘APEC 청소년 STEM 경진대회 KAIST 학술 교류 프로그램(APEC Youth STEM Conference KAIST Academic Program)’을 지난 8월 9일(토) 대전 본원 캠퍼스에서 성공적으로 개최했다고 11일 밝혔다. *STEM(Science, Technology, Engineering, Math)은 이공계를 의미함 이번 대회는 과학기술정보통신부 주최, APEC 과학영재멘토링센터 주관으로 2025년 8월 6일(수)부터 8월 9일(토)까지 KAIST(대전)와 부설 한국과학영재학교(부산)에서 진행되었으며, KAIST 프로그램은 APEC 과학영재멘토링센터가 주관하고 KAIST 과학영재교육연구원이 지원했다. 참가자들은 한국의 최첨단 연구
2025-08-12우리 대학은 삼성리서치 김태수 상무가 이끄는 전기및전자공학부 윤인수 교수 연구팀이 POSTECH, 조지아공과대학교(Georgia Tech) 연구진과 함께 구성한 연합팀 ‘팀 애틀랜타(Team Atlanta)’가 8월 8일(현지 시각) 미국 라스베이거스에서 열린 세계 최대 해킹 콘퍼런스‘DEF CON 33’에서, 미국 국방고등연구계획국(DARPA) 주관‘AI 사이버 챌린지(AIxCC)’에서 최종 우승을 차지했다고 9일 밝혔다. 이번 성과로 팀은 미화 400만 달러(약 55억 원)의 상금을 수상하며, 인공지능 기반 자율 사이버 방어 기술의 우수성을 세계 무대에서 입증했다. AI 사이버 챌린지(AIxCC)는 DARPA와 미국 보건첨단연구계획국(ARPA-H)이 공동 주관하는 2년간의 글로벌 경연으로, 인공지능 기반 CRS를 활용해 소프트웨어의 취약점을 자동 분석·탐지·수정하는 능력을 겨룬다
2025-08-10우리 대학 산업디자인과 박현준 교수 연구팀인 ‘무브랩(Move Lab)’이 차세대 웨어러블 로봇 디자인 ‘엔젤로보틱스 WSF1 비전 콘셉트(VISION Concept)’로 세계적 권위를 자랑하는 ‘2025 레드닷 디자인 어워드(Red dot Design Award)’에서 디자인 콘셉트-프로페셔널(Design Concept-Professional) 부문 ‘베스트 오브 더 베스트(Best of the Best)’를 수상했다고 8일 밝혔다. 독일의 ‘레드닷 디자인 어워드’는 세계에서 가장 잘 알려진 디자인 공모전 중 하나로, 독일 iF 디자인 어워드, 미국 IDEA와 함께 세계 3대 디자인 어워드로 꼽힌다. ‘베스트 오브 더 베스트(Best of the Best)’상은 해당 부문에서 최고의 디자인에 수여되는 상으로, 레드닷 어워드 전체 수상작 중에서도 극
2025-08-08접힘 구조는 로봇 설계에서 직관적이면서도 효율적인 형상 변형 메커니즘으로 활용되며, 우주·항공 로봇, 유연 로봇, 접이식 그리퍼(손) 등 다양한 응용이 시도되고 있다. 그러나 기존의 접힘 메커니즘은 접는 위치(hinge)나 방향이 사전에 고정돼 있어, 환경과 작업이 바뀔 때마다 구조를 새로 설계·제작해야 하는 한계가 있었다. 한국 연구진이 실시간으로 현장에 따라 프로그래밍하는‘접이식 로봇 시트 기술’을 개발해 로봇의 형태 변화 능력을 획기적으로 향상함으로써, 향후 로봇 공학 분야에 새로운 가능성을 열어줄 것으로 기대된다. 우리 대학 기계공학과 김정 교수, 박인규 교수 공동 연구팀이 형상을 실시간으로 프로그래밍할 수 있는 로봇 시트 원천 기술(field-programmable robotic folding sheet)을 개발했다고 6일 밝혔다. 이번 기술은 ‘필드 프로그래밍(field-programmability)&rs
2025-08-06