< 왼쪽부터 전기및전자공학부 박시온 석박사통합과정, 정학천 석박사통합과정, 박종용 석사과정, 최신현 교수 >
전기및전자공학부 박시온 연구원, 정학천 연구원, 박종용 연구원 및 최신현 교수는 점진적 산소 농도를 갖는 금속산화물 층을 활용하여 우리 뇌의 뉴런 세포의 동작을 모사하는 고 신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발 하였으며, 올해 Nature Communications에 출판됐다.
위 연구는 최근 Nature Communications의 Editor's highlight 논문에 선정됨에 이어, Featured Image로 선정되어 홈페이지 메인을 장식했다.
관련 링크 : https://www.nature.com/ncomms/
또한 본 연구는 2022 가을 KAIST 공과대학 breakthrough 연구성과로 소개된 바 있다.
(논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing)
< 그림 1. 우리 대학 최신현 교수 연구팀의 인공 뉴런 소자 연구 개념도가 Featured Image로 선정되어 Nature Communications의 홈페이지 메인을 장식하고 있다 >
이번 연구는 삼성미래육성사업의 지원을 받아 수행됐다.
접힘 구조는 로봇 설계에서 직관적이면서도 효율적인 형상 변형 메커니즘으로 활용되며, 우주·항공 로봇, 유연 로봇, 접이식 그리퍼(손) 등 다양한 응용이 시도되고 있다. 그러나 기존의 접힘 메커니즘은 접는 위치(hinge)나 방향이 사전에 고정돼 있어, 환경과 작업이 바뀔 때마다 구조를 새로 설계·제작해야 하는 한계가 있었다. 한국 연구진이 실시간으로 현장에 따라 프로그래밍하는‘접이식 로봇 시트 기술’을 개발해 로봇의 형태 변화 능력을 획기적으로 향상함으로써, 향후 로봇 공학 분야에 새로운 가능성을 열어줄 것으로 기대된다. 우리 대학 기계공학과 김정 교수, 박인규 교수 공동 연구팀이 형상을 실시간으로 프로그래밍할 수 있는 로봇 시트 원천 기술(field-programmable robotic folding sheet)을 개발했다고 6일 밝혔다. 이번 기술은 ‘필드 프로그래밍(field-programmability)&rs
2025-08-06심박수, 혈중산소포화도, 땀 성분 분석 등 지속적인 건강 모니터링을 위한 의료용 웨어러블 기기의 소형화와 경량화는 여전히 큰 도전 과제다. 특히 광학 센서는 LED 구동과 무선 전송에 많은 전력을 소모해 무겁고 부피가 큰 배터리를 필요로 한다. 이런 한계를 극복하기 위해 우리 연구진은 주변 빛을 에너지원으로 활용하고, 전력 상황에 따라 최적화된 관리를 통해 24시간 연속 측정이 가능한 차세대 웨어러블 플랫폼을 개발했다. 우리 대학 전기및전자공학부 권경하 교수팀이 미국 노스웨스턴대학교 박찬호 박사팀과 공동연구를 통해, 주변 빛을 활용해 배터리 전력 부담을 줄인 적응형 무선 웨어러블 플랫폼을 개발했다고 30일 밝혔다. 의료용 웨어러블 기기의 배터리 문제를 해결하기 위해, 권경하 교수 연구팀은 주변의 자연광을 에너지원으로 활용하는 혁신적인 플랫폼을 개발했다. 이 플랫폼은 세 가지 상호 보완적인 빛 에너지 기술을 통합한 것이 특징이다. 첫 번째 핵심 기술인 ‘광
2025-07-31기존의 ‘광유전학적 분자 응축물 기술(생체 분자를 빛을 사용해 특정한 덩어리(응축체)로 뭉치게 하거나 풀리게 조절하는 기술)’은 세포 안에서 여러 단백질이나 RNA가 다양하게 섞이기 때문에 원하는 분자만 골라서 다루기 어렵다는 한계가 있었다. 이 한계를 넘어, 우리 연구진이 ‘빛’을 쪼여 세포 속 특정 단백질이나 유전정보(mRNA)를 원하는 시점에 꺼내 쓸 수 있는 기술을 개발하여 유전자 조절 기술, 신약 개발 등에서의 새로운 가능성을 제시했다. 우리 대학 생명과학과 허원도 석좌교수 연구팀이 물리학과 박용근 석좌교수 연구팀과 협력하여, 단백질 및 mRNA를 세포 내에서 빛으로 원하는 시점에 저장(Store)하고 방출(Release)할 수 있는 ‘릴리저 기술(RELISR, REversible Light-Induced Store and Release)’을 개발했다고 23일 밝혔다. 이번 연구는 세포 내 다양한 생
2025-07-23백금 셀레나이드는 백금(Pt)과 셀레늄(Se)이 층상 구조로 결합된 이차원 물질로, 우수한 결정성과 층간 상호작용의 정밀한 제어를 통해 다양한 물리적·화학적 특성의 조절이 가능한 것으로 알려져 있다. 이러한 특성으로 인해, 반도체, 광검출기, 전기화학 소자 등 다양한 분야에서 활발히 연구되어 왔다. 이번 연구진은 백금 셀레나이드 표면에 존재하는 원자 수준의 백금이 기체 반응에 대해 촉매로 기능할 수 있다는 새로운 설계 개념을 제시했으며, 이를 통해 고효율 이산화탄소 전환 및 일산화탄소 저감 등을 위한 차세대 기체상 촉매 기술로서의 가능성을 입증했다. 우리 대학 화학과 박정영 석좌교수 연구팀이 충남대학교 김현유 교수, 미국 센트럴플로리다대학교(UCF) 정연웅 교수 연구팀과 공동연구를 통해, 이차원 전이금속 칼코겐화합물인 백금 셀레나이드(PtSe₂) 표면에 노출된 백금 원자를 활용하여 우수한 일산화탄소 산화 성능을 구현하는 데 성공했다고 22일 밝혔다. 연구진은
2025-07-22과도한 음주는 알코올성 간질환을 유발하며, 이 중 약 20%는 알코올 지방간염으로 진행되고 이는 간경변증과 간부전으로 이어질 수 있어 조기 진단과 치료가 매우 중요하다. 우리 연구진은 음주 시 활성산소(ROS)가 발생해 간세포 사멸과 염증 반응을 유발하는 새로운 분자 메커니즘을 규명했다. 아울러, 간세포가 신경계의 시냅스처럼 신호를 주고 받는 유사시냅스를 형성하고 염증을 유도하는 ‘새로운 신경학적 경로’를 세계 최초로 밝혀냈다. 우리 대학 의과학대학원 정원일 교수 연구팀이 서울대 보라매 병원 김원 교수 연구팀과의 공동 연구를 통해, 음주로 인한 간 손상 및 염증(알코올 지방간염, Alcohol-associated Steatohepatitis, ASH)의 발생 기전을 분자 수준에서 규명해 알코올 간질환의 진단과 치료에 단서를 제시했다고 17일 밝혔다. 정원일 교수 연구팀은 만성 음주 시 ‘소포성 글루탐산 수송체(VGLUT3)’의 발
2025-07-17