< 신경과학 인공지능 융합연구센터장 이상완 교수 >
우리 대학 바이오및뇌공학과 이상완 교수(신경과학 인공지능 융합연구센터장) 연구팀이 뇌 기반 인공지능 기술을 이용해 인공지능의 난제 중 하나인 과적합-과소적합 상충 문제를 해결하는 원리를 풀어내는 데 성공했다고 5일 밝혔다.
이상완 교수와 김동재 박사(現 뉴욕대학교 박사후 연구원)가 주도하고 우리 대학 정재승 교수가 참여한 이번 연구는 `강화학습 중 편향-분산 상충 문제에 대한 전두엽의 해법'이라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 `셀 리포트(Cell Reports)'에 지난해 12월 28일 字 온라인판에 게재됐다. (논문명: Prefrontal solution to the bias-variance tradeoff during reinforcement learning)
최근 인공지능 모델들은 다양한 실제 문제들에 대해 최적의 해법을 제시하지만, 상황 변화에 유동적으로 대응하는 부분에 있어서는 여전히 어려움을 겪고 있다. 기계학습에서는 이를 과소적합-과적합의 위험성 (underfitting-overfitting risk) 또는 편향-분산 상충 문제(bias-variance tradeoff)라 하며 오랫동안 연구됐지만, 실제 세계와 같이 상충 조건이 계속 변하는 상황에서의 명확한 해법은 아직 제안된 바가 없다.
반면 인간은 현재 주어진 문제에 집중하면서도(과소적합 문제 해결), 당면 문제에 과하게 집착하지 않고(과적합 문제 해결) 변하는 상황에 맞게 유동적으로 대처한다. 연구팀은 뇌 데이터, 확률과정 추론 모형, 강화학습 알고리즘을 이용해 인간의 뇌가 이 문제를 어떻게 해결하는지에 대한 이론적 틀을 마련하고 이로부터 유동적인 메타 강화학습 모델을 도출해냈다.
놀랍게도 인간의 뇌는 중뇌 도파민 회로와 전두엽에서 처리되는 `예측 오차'의 하한선(prediction error lower bound)이라는 단 한 가지 정보를 이용해 이 문제를 해결한다. 우리의 전두엽, 특히 복외측전전두피질은 현재 내가 사용하고 있는 문제 해결 방식으로 주어진 문제를 얼마나 잘 풀 수 있을지에 대한 기대치의 한계를 추정하고(예: `이렇게 풀면 90점까지는 받을 수 있어'), 변화하는 상황에 맞춰 최적인 문제 해결전략을 유동적으로 선택하는 과정 (예: `이렇게 풀면 기껏해야 70점이니 다르게 풀어보자')을 통해 과소적합-과적합의 위험을 최소화하게 된다.
이상완 교수 연구팀은 2014년 해당 전두엽 영역이 환경의 불확실성을 바탕으로 강화학습전략을 유동적으로 조절하는 데 관여한다는 사실을 처음 발견했고(`뉴런(Neuron)' 학술지에 발표), 2015년에는 인과관계 추론 과정에도 관여한다는 사실을 발견했다(`PLOS Biology' 학술지에 발표). 이어 2019년에는 해당 뇌 영역이 문제의 복잡도까지 고려할 수 있다는 사실을 발견했다(`네이처 커뮤니케이션즈(Nature Communications)' 학술지에 발표).
이러한 일련의 연구 결과들은 자신의 학습 및 추론 능력을 스스로 평가하는 인간의 메타 인지 능력을 보여주는 증거로, 이 능력을 바탕으로 인공지능이 풀기 어려워하는 현실 세계의 다양한 상충적 상황들을 풀어낼 수 있다는 `전두엽 메타 학습 이론'을 정립한 바 있다(`사이언스 로보틱스(Science Robotics)' 학술지에 발표). 이번 연구는 이 이론에 기반해 인공지능의 오랜 난제 중 하나인 과소적합-과적합 상충 문제를 실제로 풀어낸 최초의 사례로 평가된다.
< 그림 1. 인간의 유동적 문제해결 방식을 모사하는 메타 강화학습 모델 그림 >
연구를 통해 개발된 메타 강화학습 모델을 이용하면 간단한 게임을 통해 인간의 유동적 문제 해결 능력을 간접적으로 측정할 수 있다. 더 나아가 스마트 교육이나 중독과 관련된 인지 행동치료에 적용할 경우 상황 변화에 유동적으로 대처하는 인간의 문제 해결 능력 자체를 향상할 수 있을 것으로 기대된다. 차세대 인공지능, 스마트 교육, 인지 행동치료 등 다양한 분야에 파급력이 큰 원천 기술로 최근 국내 및 해외 특허 출원이 완료된 상태다.
연구를 주도한 제1 저자 김동재 박사는 "인간 지능의 특장점에 대한 이해가 얼마나 중요한지 보여주는 연구 중 하나ˮ라고 말했다. 연구 책임자인 이상완 교수는 "인공지능이 우리보다 잘 푸는 문제가 많지만, 반대로 인공지능으로 풀기 어려운 문제들이 우리에게는 정말 쉽게 느껴지는 경우들이 많다. 인간의 다양한 고위 수준 능력을 인공지능 이론 관점에서 형식화하는 연구를 통해 인간 지능의 비밀을 하나씩 풀어나갈 수 있을 것으로 기대된다ˮ라며 "이러한 뇌 기반 인공지능 연구는 인간의 지능을 공학적으로 탐구하는 과정으로 볼 수 있으며, 인간과 인공지능이 서로 도우며 함께 성장해 나갈 수 있는 명확한 기준점을 마련할 수 있을 것ˮ이라고 말했다. 이상완 교수는 뇌 기반 인공지능 연구의 독창성과 도전성을 인정받아 구글 교수 연구상과 IBM 학술상을 받은 바 있다.
연구팀은 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 설립한 KAIST 신경과학-인공지능 융합연구센터에서 기반 기술을 활용해 인간 지능을 모사한 차세대 인공지능 모델을 개발하고, 아울러 딥마인드, IBM 인공지능 연구소, MIT, 옥스퍼드 대학 등 국제 공동연구 협약 기관과 공동연구를 통해 기술의 파급력을 높여나갈 계획이라고 말했다.
한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 및 한국연구재단의 지원을 받아 수행됐다.
KAIST는 산업체의 실질적 기술 수요에 기반한 연구 주제 도출, 고급 AI 인재 양성, 연구 성과의 산업 현장 실증을 통해 AI 기술의 산업 적용(AX, AI Transformation) 전환을 주도하고 있다. 이러한 가운데, KAIST가 과학기술정보통신부 주관 생성AI 국가R&D 사업에서 AI 핵심기술 개발에 나서며, 국내 AI 기술 경쟁력 강화에 앞장서고 있다고 13일 밝혔다. 우리 대학은 이번 ‘생성AI 선도인재양성사업’에서 산업체 주관 2개 과제와 기관 주관 1개 과제 등 총 3개 과제 모두의 공동연구기관으로 선정됨으로써, 생성형 AI의 핵심 기술 개발과 산학협력 기반 실무형 핵심 인재 양성이라는 이중 과제를 함께 수행하게 됐다. 또한 ‘독자 AI 파운데이션 모델 개발’사업에서는 총 5개 컨소시엄 중 4개에 우리 교수진이 핵심 연구진으로 참여해, 명실상부한 국내 생성 AI 연구의 중심 축 역할을 하고 있다. 생
2025-08-13텍스트 기반 대규모 언어 모델(LLM)인 ChatGPT 등과 함께, 산업 현장에서는 금융 거래, 주식, SNS, 환자기록, 등 비정형 데이터를 그래프 형태로 분석하는 GNN(Graph Neural Network) 기반의 그래프 AI 모델이 적극 활용되고 있다. 하지만 전체 그래프를 한 번에 학습(풀 그래프 학습)하는데 막대한 메모리와 GPU 서버가 필요하다는 한계점이 있다. KAIST 연구진이 단 한 대의 GPU 서버만으로도 대규모 GNN 모델을 최고속 학습할 수 있는 세계 최고 성능의 소프트웨어 기술 개발에 성공했다. 우리 대학 전산학부 김민수 교수 연구팀이 여러 대의 GPU 서버를 활용하는 기존 방식과 달리 한 대의 GPU 서버에서 대규모 풀(full) 그래프 AI 모델을 빠르게 학습하고 추론할 수 있는 GNN 시스템 ‘FlexGNN(플렉스지엔엔)’을 개발했다고 13일 밝혔다. FlexGNN은 기존 기술 대비 학습 속도를 최대 95배 향상한다. 최
2025-08-13우리 대학 수리과학과 임미경 교수가 AIP 2025(12th Applied Inverse Problems Conference)에서 ‘기하함수론(Geometric function theory)에 기반한 역문제 연구’를 주제로 기조강연(plenary talk)을 진행했다. AIP는 응용수학 분야의 대표적 국제학술대회 중 하나로, 국제역문제학회(IPIA, Inverse Problems International Association)가 주관하며 격년으로 열린다. 이번 학회는 7월 28일부터 8월 1일까지 브라질 리우데자네이루에서 개최됐으며, 기조강연, 미니심포지움 40여 개, 포스터 세션으로 구성됐다. IPIA는 2007년 시작됐으며 2022년 독일에서 공식 등록된 비영리 국제학술단체로 재창립됐다. 임미경 교수는 당시 재창립 집행위원으로 활동했다. 이번 강연에서는 임 교수 연구팀이 지난 10여 년간 수행해 온 전기/탄성방정식 경계치 문제에 대한 새로운
2025-08-12우리 대학은 ‘2025 APEC 청소년 STEM* 공동연구 및 경진대회’에 참여한 10개국 28명의 청소년 연구자와 30여 명의 전문가를 대상으로 한 글로벌 과학교류 프로그램,‘APEC 청소년 STEM 경진대회 KAIST 학술 교류 프로그램(APEC Youth STEM Conference KAIST Academic Program)’을 지난 8월 9일(토) 대전 본원 캠퍼스에서 성공적으로 개최했다고 11일 밝혔다. *STEM(Science, Technology, Engineering, Math)은 이공계를 의미함 이번 대회는 과학기술정보통신부 주최, APEC 과학영재멘토링센터 주관으로 2025년 8월 6일(수)부터 8월 9일(토)까지 KAIST(대전)와 부설 한국과학영재학교(부산)에서 진행되었으며, KAIST 프로그램은 APEC 과학영재멘토링센터가 주관하고 KAIST 과학영재교육연구원이 지원했다. 참가자들은 한국의 최첨단 연구
2025-08-12기존 약물 개발 방식은 질병을 일으키는 원인이 되는 표적 단백질(예: 암세포 수용체)을 정하고, 그 단백질에 잘 달라붙어 작용을 막을 분자(약물 후보)를 찾는 방식으로 수많은 후보 분자 대상으로 진행하다 보니 시간·비용이 많이 들고 성공 가능성도 낮았다. 우리 대학 연구진이 표적 단백질 정보만 있으면, 사전 정보(분자)가 없어도 딱 맞는 약물 후보를 설계해 주는 AI를 개발해서 신약 개발의 새로운 가능성을 열었다. 우리 대학 화학과 김우연 교수 연구팀이 결합하는 약물 후보 분자의 사전 정보 없이 단백질의 구조만으로, 그에 꼭 맞는 약물 후보 분자와 그 결합 방식(비공유 결합성 상호작용)까지 함께 설계 및 최적화까지 할 수 있는 인공지능 모델 ‘BInD’를 개발했다고 10일 밝혔다. 이 기술의 핵심은 ‘동시 설계’다. 기존 AI 모델들은 분자만 만들거나, 만들어진 분자와 단백질의 결합 여부만 따로 평가했다. 반면, 이번
2025-08-10