< (왼쪽부터) 기계공학과 박인규 교수, 최중락 박사과정 >
우리 대학 기계공학과 박인규 교수 연구팀이 차세대 전자장치인 사용자 맞춤형 3D 형상의 웨어러블 신축성 전자장치 설계 및 제조기술 관련 원천기술을 개발했다.
웨어러블 전자장치는 미래를 바꿀 10대 기술로, 안경형 웨어러블 전자장치 (구글 글래스)에서 손목 착용형 웨어러블 전자장치 (스마트 워치)에 이르기까지 세상의 주목을 받아왔다. 최근에는 이런 웨어러블 전자장치를 착용하는 사람의 신체 부위 형태에 딱 들어맞는 디자인으로 바뀌고 있으며, 이에 따라서 착용감이 높으며, 다양한 생체 신호를 정확하게 측정하고, 정보전달을 신속하게 할 수 있는 전자장치 개발에 힘쓰고 있다.
하지만, 기존의 연구들은 대부분 2D 필름 형태의 신축성이 있는 웨어러블 전자장치이므로, 복잡한 형상을 가진 3D 형상의 표면에 부착할 수 없다는 단점이 있다.
박인규 교수 연구진은 이러한 문제를 해결을 위해, 열 성형 기술 및 사전왜곡 패터닝 기술을 개발하였다. 제작 방법은 다음과 같다. 열 성형이 가능한 전극 및 기판을 제작하고, 이를 사전왜곡 패터닝 기술을 통하여 2D 필름에 인쇄한다. 그 이후에 열 성형을 통하여 원하는 3D 형상을 가지도록 성형한다. 따라서 제작된 3D 전자장치의 경우 사용자가 원하는 디자인으로 최소의 오차를 가지며 정확히 제작이 가능하다. 또한, 사용된 전극 및 기판의 경우 열 성형이 가능한 고신축성 물질이기 때문에, 제작된 3D 전자장치의 경우 고신축성 및 기계/전기적 안정성을 보여준다. (그림 1)
< 그림 1. 본 연구에서 개발된 3D 전자장치 개발도 >
< 그림 2. 본 기술을 활용해 손가락형 터치센서 및 발꿈치 욕창 예방용 무선 압력 모니터링에 사용할 수 있음 >
이를 활용하여 다양한 사용자 맞춤형 어플리케이션에 적용하였다. 첫번째로, 손가락형 터치센서를 개발하였다. 기존의 손가락형 센서의 경우 대부분 딱딱한 물질로 되어있어서 착용감이 불편하다는 단점이 있다. 이에 반해 개발된 손가락형 터치센서는 사용자 손가락에 딱 맞는 디자인으로 사용자가 편안하게 착용이 가능하며 다양한 변형에 대해서 전기적으로 안정하기 때문에 터치센서로 활용 할 수 있다. 두 번째로, 본 기술과 NFC 시스템을 결합하여 무선 배터리-프리 발꿈치 부착 소프트 압력 센서 시스템을 개발하였다. 이를 통해 부착이 어려운 발꿈치에 센서를 균일하게 부착이 가능하며 안정적으로 압력측정이 가능하다.
박인규 교수는 “4차 산업혁명 시대에 사용자 맞춤형 전자장치는 미래의 주요 기술 중 하나라고 기대한다. 따라서 본 기술이 기존의 웨어러블 전자장치 제작공정의 문제점을 해결하여 차세대 웨어러블 전자장치 개발의 전환점이 될 수 있는 계기가 될 것으로 기대한다”고 밝혔다.
이번 연구는 제 1 저자 우리 대학 최중락 박사과정 학생 및 박인규 교수가 교신저자로 참여하였다. 본 연구는 이 논문은 2021년도 과학기술정보통신부의 재원으로 한국연구재단의 중견연구자 과제의 지원을 받아 수행되었다.
이번 연구 결과는 융합연구 분야 최상위 학술지 중 하나인 Science Advances (2020 impact factor 14.14) 지 2021년 10월 13일자로 논문이 게재되었다. (논문명: “Customizable, conformal, and stretchable 3D electronics via predistorted pattern generation and thermoforming”)
우리 대학 산업디자인과 박현준 교수 연구팀인 ‘무브랩(Move Lab)’이 차세대 웨어러블 로봇 디자인 ‘엔젤로보틱스 WSF1 비전 콘셉트(VISION Concept)’로 세계적 권위를 자랑하는 ‘2025 레드닷 디자인 어워드(Red dot Design Award)’에서 디자인 콘셉트-프로페셔널(Design Concept-Professional) 부문 ‘베스트 오브 더 베스트(Best of the Best)’를 수상했다고 8일 밝혔다. 독일의 ‘레드닷 디자인 어워드’는 세계에서 가장 잘 알려진 디자인 공모전 중 하나로, 독일 iF 디자인 어워드, 미국 IDEA와 함께 세계 3대 디자인 어워드로 꼽힌다. ‘베스트 오브 더 베스트(Best of the Best)’상은 해당 부문에서 최고의 디자인에 수여되는 상으로, 레드닷 어워드 전체 수상작 중에서도 극
2025-08-08심박수, 혈중산소포화도, 땀 성분 분석 등 지속적인 건강 모니터링을 위한 의료용 웨어러블 기기의 소형화와 경량화는 여전히 큰 도전 과제다. 특히 광학 센서는 LED 구동과 무선 전송에 많은 전력을 소모해 무겁고 부피가 큰 배터리를 필요로 한다. 이런 한계를 극복하기 위해 우리 연구진은 주변 빛을 에너지원으로 활용하고, 전력 상황에 따라 최적화된 관리를 통해 24시간 연속 측정이 가능한 차세대 웨어러블 플랫폼을 개발했다. 우리 대학 전기및전자공학부 권경하 교수팀이 미국 노스웨스턴대학교 박찬호 박사팀과 공동연구를 통해, 주변 빛을 활용해 배터리 전력 부담을 줄인 적응형 무선 웨어러블 플랫폼을 개발했다고 30일 밝혔다. 의료용 웨어러블 기기의 배터리 문제를 해결하기 위해, 권경하 교수 연구팀은 주변의 자연광을 에너지원으로 활용하는 혁신적인 플랫폼을 개발했다. 이 플랫폼은 세 가지 상호 보완적인 빛 에너지 기술을 통합한 것이 특징이다. 첫 번째 핵심 기술인 ‘광
2025-07-31우리 대학 전기및전자공학부 교수이자 ICT 석좌교수인 유회준 교수가 2025년 대한민국학술원 신임회원으로 선출됐다. 유 교수는 7월 11일 개최된 대한민국학술원 총회를 통해 공식 선출되었으며, 전자공학 분야에서의 지속적인 연구 성과와 학술 기여를 바탕으로 선임되었다. 당월 18일 서울 서초구에 위치한 대한민국학술원에서 열린 신임회원 회원증서 수여식에 참석하여 선임장을 수여받았다. 대한민국학술원은 1954년 설립된 교육부 산하의 국가 학술기관으로, 국내 학문 발전에 이바지한 석학을 대상으로 매년 각 학문 분과별로 극소수의 신임회원만을 엄정한 심사를 통해 선발하고 있다. 올해는 전국에서 총 8명이 신임회원으로 선정되었으며, 유 교수는 자연과학분과 제3분과(공학)에서 유일하게 선출되었다. 학술원은 학문적 업적이 탁월하고 해당 분야의 발전에 기여한 석학을 회원으로 선출하여, 이들의 연구를 지원하고 학술 정책 자문, 국내외 학술 교류, 우수학술도서 선정, 학술원상 시상 등의 다양한
2025-07-22기존 커프 방식으로 혈압을 측정할 때 팔을 압박하는 불편함이 있으며, 측정 전 최소 10분의 안정이 필요했다. 최근 스마트워치에 적용된 혈압 측정 기술 역시 고혈압이나 운동 중 정확도가 떨어지고, 연속 측정이 어렵다는 단점이 있다. KAIST 연구진이 단순 휴식 상태 뿐만 아니라 계단 오르기 등 운동 중 고혈압 감지까지도 정확하게 연속 측정이 가능한 혈압 모니터링 기술을 개발했다. 우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 수십 개의 세분화된 파장의 빛을 사용해 혈관 내 혈류 변화를 광학적으로 측정하는 혁신 방법인 초분광 PPG(광용적맥파, Photoplethysmography) 기술을 활용해 운동 상태에서의 연속 혈압 모니터링에 활용될 수 있는 웨어러블 혈압 센서를 개발하는 데 성공했다. 최근 스마트워치에서 세 가지 파장을 갖는 PPG 센서를 이용해 혈압 측정 기술을 탑재했지만, 고혈압 상태 및 운동 상태에서의 낮은 정확도와 연속적인 측정이 불가하다는 문제가 있다.
2025-05-08나무뿌리가 흙에 단단히 고정되는 구조를 모방해, 한국 연구진이 최대 700%까지 늘어나는 신축성을 확보하고 스트레처블 전자 제품의 상용화를 위한 새로운 기준을 제시했다. 특히 스마트 저항 밴드와 스트레처블 LED 디스플레이, 태양 전지와 같은 응용 사례를 통해 기술의 폭넓은 적용 가능성을 입증했다. 우리 대학 기계공학과 박인규 교수 연구팀이 한국전자통신연구원(ETRI)과 공동연구를 통해 스트레처블 전자 제품 개발에서 기존의 한계를 극복한 혁신적인 기술인 ‘생체 모사 인터페이스 설계(Bioinspired Interfacial Engineered Flexible Island, 이하 BIEFI)’를 개발했다고 6일 밝혔다. 이번 연구는 생체 모사 인터페이스 설계를 기반으로, 전자 제품의 유연성, 신축성과 기계적 내구성을 동시에 극대화하는 데 성공했다. 연구진은 주 뿌리(primary roots)와 보조 뿌리(secondary roots) 구조를 설계에
2025-03-06