< (왼쪽부터) 생명화학공학과 권문수 박사과정, 이준규 박사과정, 김현욱 교수 >
유전자, 단백질, 대사물질 등 복잡한 정보를 표현하는 바이오 경로 이미지는 중요한 연구 결과를 내포하고 있지만, 이미지 기반 정보 추출에 대해 그동안 충분한 연구가 이뤄지지 않았다. 이에 우리 연구진은 바이오 경로 정보를 자동으로 추출할 수 있는 인공지능 프레임워크를 개발했다.
우리 대학 생명화학공학과 김현욱 교수 연구팀이 바이오 경로 이미지에서 유전자와 대사물질 정보를 자동으로 추출하는 기계학습 기반의 ‘바이오 경로 정보 추출 프레임워크(이하 EBPI, Extraction of Biological Pathway Information)’를 개발했다고 28일 밝혔다.
연구팀이 개발한 EBPI는 문헌에서 추출한 이미지 속의 화살표와 텍스트를 인식하고, 이를 기반으로 바이오 경로를 편집 가능한 표의 형태로 재구성한다. 객체 감지 모델 등의 기계학습을 사용해 경로 이미지 내 화살표의 위치와 방향을 감지하고, 이미지 속 텍스트를 유전자, 단백질, 대사물질로 분류한다. 그 후 추출된 정보를 통합해 경로 정보를 표 형식으로 제공한다.
연구팀은 74,853편의 논문에서 추출한 바이오 경로 이미지와 기존 수작업으로 작성된 경로 지도를 비교하며 EBPI의 성능을 검증했다. 그 결과, 높은 정확도로 바이오 경로 정보가 자동으로 추출됐음을 확인했다.
EBPI를 사용해 대표적인 바이오 경로 데이터베이스에 포함되지 않은 생화학 반응 정보를 대량의 문헌 내 바이오 경로 이미지로부터 추출하는 데에도 성공했다.
다양한 산업적 가치를 지닌 대사물질들의 생합성 관련 문헌을 EBPI로 분석한 결과, 문헌에서는 보고가 됐지만, 기존 데이터베이스에서는 누락된 생화학 반응들이 확인된 것이다. 화학산업에서 다양한 응용분야를 갖는 1,4-부탄디올, 2-메틸부티르산, 하이드록시티로솔, 레불린산 및 발레로락탐의 생합성 경로를 예시로 이러한 발견을 제시했다.
< 그림 1. 바이오 경로 이미지에서 생화학 반응 정보를 자동으로 추출하는 EBPI의 모식도 >
연구를 총괄한 김현욱 교수는 “이번 연구에서 개발된 EBPI는 대규모 문헌 데이터 분석에 있어 중요한 도구가 될 것이며 생명공학, 대사공학 및 합성생물학 분야에서 바이오 경로 이미지를 AI로 분석하는 최초의 사례로, 관련 연구의 실험 디자인 및 분석 시 유용하게 활용될 수 있을 것”이라고 밝혔다.
< 그림 2. 감마 하이드록시뷰티르산 대사경로 이미지에 EBPI를 적용하여, 해당 생화학 반응 정보를 추출한 예시 >
생명화학공학과 권문수 박사과정생과 이준규 박사과정생이 공동 제1 저자인 이번 연구는 대사공학 및 합성생물학 분야의 대표적 국제학술지인 대사공학(Metabolic Engineering, JCR 분야 상위 10% 이내)에 11월호에 게재됐다.
※ 논문명 : A machine learning framework for extracting information from biological pathway images in the literature
※ 저자 정보 : 권문수(한국과학기술원, 공동 제1 저자), 이준규(한국과학기술원, 공동 제1 저자), 김현욱(한국과학기술원, 교신저자) 포함 총 3명
한편 이번 연구는 과학기술정보통신부 한국연구재단 및 농촌진흥청의 농업미생물사업단의 지원을 받아 수행됐다.
우리 대학 전기및전자공학부 심현철 교수 연구팀이 2025년 4월 12일 아랍에미리트(UAE) 정부 후원으로 개최된 아부다비 자율 레이싱 대회(Abu Dhabi Autonomous Racing League, 이하 A2RL)의 드론 챔피언십 리그( Drone Championship League, 이하 DCL)에서 세계 3위를 차지하였다. 아부다비 국립 전시 센터 마리나(ADNEC Marina) 대회장에서 개최된 본 선 대회에서는 2024년 가을 예선을 통해 선발된 14개 팀들이 참가해 실력을 겨뤘다. 참가팀들은 ▲최단 비행시간 경연(AI Grand Challenge), ▲4대동시 자율비행, ▲양쪽에서 마주 보면서 고속으로 비행하는 드래그 레이싱, ▲AI 대 인간 조정사 대결 등 총 4개 부문에서 경합을 벌였다. 그 중 8개 팀이 최단 비행시간 경연 준결승에 진출했고, 이 중 KAIST는 네덜란드 델프트공대(TU Delft), UAE 기술혁신연구소(TII), 체코 공과대학(Czec
2025-04-18효소는 세포 내에서 일어나는 생화학적 반응을 촉매하는 단백질로, 세포의 대사 과정에서 핵심적인 역할을 수행한다. 이에 따라 새로운 효소의 기능을 규명하는 것은 미생물 세포공장 구축에서 핵심적인 과제다. KAIST 연구진이 인공지능(AI)을 활용해 자연에 존재하지 않는 새로운 효소를 설계함으로써, 미생물 세포공장 구축을 가속화하고 신약·바이오 연료 등 차세대 바이오산업의 개발 가능성을 크게 높였다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 AI를 활용한 효소 기능 예측 기술의 발전 과정과 최신 동향을 정리하고, AI가 새로운 효소를 찾고 설계하는데 어떤 역할을 해왔는지 분석하여 ‘인공지능을 이용한 효소 기능 분류’를 발표했다. 이상엽 특훈교수 연구팀은 이번 연구에서 머신러닝(Machine learning)과 딥러닝(Deep learning)을 활용한 효소 기능 예측 기술의 발전 과정을 체계적으로 정리·분석하여 제공했다.
2025-04-17빅데이터와 인공지능 기반의 건설재료 품질관리 혁신 기술 제시 우리 대학 건설및환경공학과 김재홍 교수 연구팀은 시멘트 분산제의 성능을 정밀하게 평가할 수 있는 자동화 실험 시스템을 개발했다. 이 시스템은 기존 수작업 실험의 한계를 극복하고, 데이터 사이언스와 머신러닝 기법을 활용해 시멘트 기반 재료의 품질 관리를 혁신적으로 개선할 수 있는 길을 열었다. 건설재료 품질관리의 도전과제 콘크리트는 전 세계에서 가장 많이 생산되는 공학 재료지만, 시멘트와 골재 같은 원재료가 지역마다 성질이 달라 품질과 성능의 변동성이 크다. 따라서 콘크리트 재료의 성능 시험에는 많은 수의 샘플이 필요하며, 이는 노동 집약적인 작업으로 이어진다. 김재홍 교수는 "건설재료는 다른 공학 재료에 비해 변동성이 매우 크기 때문에, 재료의 성능평가 신뢰성을 높이려면 충분한 양의 데이터가 필요합니다. 이를 위해서는 많은 수의 샘플을 제조하고 테스트해야 하는데, 기존의 수작업 방식으로는 단순히 품질 검증을 위한
2025-04-14우리 대학은 세계적인 미디어 아티스트인 문화기술대학원 이진준 교수와 글로벌 아티스트 지드래곤(G-DRAGON)과의 협업을 통해, 지난 4월 9일 KAIST 우주연구원에서 실시한 세계 최초로 미디어아트를 기반으로 한 '우주 음원 송출 프로젝트'를 성공적으로 추진했다. 이번 프로젝트는 KAIST와 갤럭시코퍼레이션과 추진 중인‘AI 엔터테크 연구센터’의 일환으로 제안된 것이다. 갤럭시코퍼레이션 소속 아티스트이자 KAIST 기계공학과 초빙교수로 활동 중인 가수 지드래곤(본명 권지용)의 메세지와 음원을 세계 최초로 우주로 송출하는 프로젝트이다. 과학기술, 예술, 대중음악이 결합된 융복합 프로젝트로, KAIST의 첨단 우주 기술과 이진준 교수의 미디어아트 작품, 그리고 지드래곤의 음성과 음원(홈스윗홈, HOME SWEET HOME)이 하나로 연결된 새로운 형태의 ‘우주 문화 콘텐츠’ 실험이다. 이번 협업은 ‘인간 내면의 우주를
2025-04-10우리 대학은 인공지능(AI) 엔터테크 기업 갤럭시코퍼레이션(대표 최용호)과 함께 ‘AI 엔터테크 연구센터’ 설립을 위한 현판식을 KAIST 본원에서 개최한다. 이번 협력은 KAIST가 추진해 온 예술 융합 연구 전략의 일환으로, 과학기술을 기반으로 한 창의적 문화 콘텐츠 개발을 통해 미래형 K-Culture를 주도하려는 노력의 연장선에 있다. KAIST는 단순한 기술 개발을 넘어, 감성 기술과 문화적 상상력의 융합을 통해 콘텐츠 산업의 지평을 넓히는 ‘테크-아트(Tech-Art)’ 융합 모델을 지속적으로 실현해 오고 있다. 앞서 KAIST는 세계적인 소프라노 조수미 초빙석학교수와의 협력으로 ‘조수미 아트&테크 연구센터’를 설립하고, AI 기반의 인터랙티브 공연 기술, 몰입형 콘텐츠 등 예술과 공학의 융합 연구를 선도해왔다. 이번 ‘AI 엔터테크 연구센터’ 설립은 K-콘텐츠 산업의 기술
2025-04-09