음악 창작자가 초기 아이디어를 생각하거나 창작 중간 막힐 때, 이를 같이 해결해 주고 다양한 음악적 방향 탐색에 실질적인 도움을 주는 동료가 있다면 얼마나 좋을까? KAIST 연구진이 이런 음악 창작을 돕는 동료 작가와 같은 AI 기술을 개발했다.
KAIST(총장 이광형)는 전기및전자공학부 이성주 교수 연구팀이 AI 기반 음악 창작 지원 시스템 어뮤즈(Amuse)를 개발하였다. 이 연구 결과는 4월 26일부터 5월 1일까지 일본 요코하마에서 열린 인간-컴퓨터 상호작용 분야 세계 최고 권위의 국제학술대회인 CHI(ACM Conference on Human Factors in Computing Systems)에서 전체 논문 중 상위 1%에게만 수여되는 최우수 논문상(Best Paper Award)을 수상했다고 7일 밝혔다.
< (왼쪽부터) 카네기 멜런대 크리스 도너휴 교수, 전기및전자공학부 김예원 박사과정, 이성주 교수 >
이성주 교수 연구팀이 개발한 어뮤즈(Amuse) 시스템은 텍스트, 이미지, 오디오와 같은 다양한 형식의 영감을 입력하면 이를 화성 구조(코드 진행)로 변환해 작곡을 지원해 주는 AI 기반 시스템이다.
예를 들어, 사용자가 ‘따뜻한 여름 해변의 기억’과 같은 문구나 이미지, 사운드 클립을 입력하면, 어뮤즈는 해당 영감에 어울리는 코드 진행을 자동으로 생성해 제안한다.
기존의 생성 AI와 달리, 어뮤즈는 사용자의 창작 흐름을 존중하고, AI의 제안을 유연하게 통합·수정할 수 있는 상호작용 방식을 통해 창의적 탐색을 자연스럽게 유도한다는 점에서 차별성을 갖는다.
어뮤즈 시스템의 핵심 기술은 대형 언어 모델의 이용해 사용자의 영감으로 프롬프트에 입력한 글자 따라 이에 어울리는 음악 코드를 생성하고, 실제 음악 데이터를 학습한 AI 모델이 부자연스럽거나 어색한 결과는 걸러내는(리젝션 샘플링) 과정을 거쳐 결합한 두 가지 방법을 자연스럽게 이어 재현하는 하이브리드 생성 방식이다.
< 그림. 어뮤즈(Amuse)의 시스템 구성. 사용자 입력으로부터 음악 키워드를 추출한 뒤, 대형 언어 모델 기반 코드 진행을 생성하고 리젝션 샘플링으로 정제한다(왼쪽). 오디오 입력으로부터 코드 추출도 가능하다(오른쪽). 하단은 생성된 코드의 화성 구조를 시각화한 예시이다. >
연구팀은 실제 뮤지션들을 대상으로 한 사용자 연구를 수행하여, 어뮤즈가 단순한 음악 생성 AI가 아닌, 사람과 AI가 협업하는 창작 동반자(Co-Creative AI)로서의 가능성이 높다는 평가를 받았다.
KAIST 전기 및 전자공학부 박사과정 김예원, 이성주 교수, 카네기 멜런 대학의 크리스 도너휴(Chris Donahue) 교수가 참여한 해당 논문은 학계 및 산업계 모두의 창의적 AI 시스템 설계의 가능성을 보여주었다.
※ 논문명 : Amuse: Human-AI Collaborative Songwriting with Multimodal Inspirations DOI : https://doi.org/10.1145/3706598.3713818
※ 연구 데모 영상: https://youtu.be/udilkRSnftI?si=FNXccC9EjxHOCrm1
※ 연구 홈페이지: https://nmsl.kaist.ac.kr/projects/amuse/
이성주 교수는 “ 최근 생성형 AI 기술은 저작권이 있는 콘텐츠를 그대로 모방하여 창작자의 저작권을 침해하거나, 창작자의 의도와는 무관하게 일방향으로 결과물을 생성한다는 점에서 우려를 낳고 있다. 이에 연구팀은 이러한 흐름에 문제 의식을 가지고, 창작자가 실제로 필요로 하는 것이 무엇인지에 주목하며 창작자 중심의 AI 시스템 설계에 주안점을 두었다.”라고 말했다.
이어 ”어뮤즈는 창작자의 주도권을 유지한 채, 인공지능과의 협업 가능성을 탐색하는 시도로, 향후 음악 창작 도구와 생성형 AI 시스템의 개발에 있어 보다 창작자 친화적인 방향을 제시하는 출발점이 될 것으로 기대된다.“라고 설명했다.
이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었다.(RS-2024-00337007)
우리 대학 수리과학과 임미경 교수가 AIP 2025(12th Applied Inverse Problems Conference)에서 ‘기하함수론(Geometric function theory)에 기반한 역문제 연구’를 주제로 기조강연(plenary talk)을 진행했다. AIP는 응용수학 분야의 대표적 국제학술대회 중 하나로, 국제역문제학회(IPIA, Inverse Problems International Association)가 주관하며 격년으로 열린다. 이번 학회는 7월 28일부터 8월 1일까지 브라질 리우데자네이루에서 개최됐으며, 기조강연, 미니심포지움 40여 개, 포스터 세션으로 구성됐다. IPIA는 2007년 시작됐으며 2022년 독일에서 공식 등록된 비영리 국제학술단체로 재창립됐다. 임미경 교수는 당시 재창립 집행위원으로 활동했다. 이번 강연에서는 임 교수 연구팀이 지난 10여 년간 수행해 온 전기/탄성방정식 경계치 문제에 대한 새로운
2025-08-12우리 대학은 ‘2025 APEC 청소년 STEM* 공동연구 및 경진대회’에 참여한 10개국 28명의 청소년 연구자와 30여 명의 전문가를 대상으로 한 글로벌 과학교류 프로그램,‘APEC 청소년 STEM 경진대회 KAIST 학술 교류 프로그램(APEC Youth STEM Conference KAIST Academic Program)’을 지난 8월 9일(토) 대전 본원 캠퍼스에서 성공적으로 개최했다고 11일 밝혔다. *STEM(Science, Technology, Engineering, Math)은 이공계를 의미함 이번 대회는 과학기술정보통신부 주최, APEC 과학영재멘토링센터 주관으로 2025년 8월 6일(수)부터 8월 9일(토)까지 KAIST(대전)와 부설 한국과학영재학교(부산)에서 진행되었으며, KAIST 프로그램은 APEC 과학영재멘토링센터가 주관하고 KAIST 과학영재교육연구원이 지원했다. 참가자들은 한국의 최첨단 연구
2025-08-12기존 약물 개발 방식은 질병을 일으키는 원인이 되는 표적 단백질(예: 암세포 수용체)을 정하고, 그 단백질에 잘 달라붙어 작용을 막을 분자(약물 후보)를 찾는 방식으로 수많은 후보 분자 대상으로 진행하다 보니 시간·비용이 많이 들고 성공 가능성도 낮았다. 우리 대학 연구진이 표적 단백질 정보만 있으면, 사전 정보(분자)가 없어도 딱 맞는 약물 후보를 설계해 주는 AI를 개발해서 신약 개발의 새로운 가능성을 열었다. 우리 대학 화학과 김우연 교수 연구팀이 결합하는 약물 후보 분자의 사전 정보 없이 단백질의 구조만으로, 그에 꼭 맞는 약물 후보 분자와 그 결합 방식(비공유 결합성 상호작용)까지 함께 설계 및 최적화까지 할 수 있는 인공지능 모델 ‘BInD’를 개발했다고 10일 밝혔다. 이 기술의 핵심은 ‘동시 설계’다. 기존 AI 모델들은 분자만 만들거나, 만들어진 분자와 단백질의 결합 여부만 따로 평가했다. 반면, 이번
2025-08-10우리 대학은 삼성리서치 김태수 상무가 이끄는 전기및전자공학부 윤인수 교수 연구팀이 POSTECH, 조지아공과대학교(Georgia Tech) 연구진과 함께 구성한 연합팀 ‘팀 애틀랜타(Team Atlanta)’가 8월 8일(현지 시각) 미국 라스베이거스에서 열린 세계 최대 해킹 콘퍼런스‘DEF CON 33’에서, 미국 국방고등연구계획국(DARPA) 주관‘AI 사이버 챌린지(AIxCC)’에서 최종 우승을 차지했다고 9일 밝혔다. 이번 성과로 팀은 미화 400만 달러(약 55억 원)의 상금을 수상하며, 인공지능 기반 자율 사이버 방어 기술의 우수성을 세계 무대에서 입증했다. AI 사이버 챌린지(AIxCC)는 DARPA와 미국 보건첨단연구계획국(ARPA-H)이 공동 주관하는 2년간의 글로벌 경연으로, 인공지능 기반 CRS를 활용해 소프트웨어의 취약점을 자동 분석·탐지·수정하는 능력을 겨룬다
2025-08-10접힘 구조는 로봇 설계에서 직관적이면서도 효율적인 형상 변형 메커니즘으로 활용되며, 우주·항공 로봇, 유연 로봇, 접이식 그리퍼(손) 등 다양한 응용이 시도되고 있다. 그러나 기존의 접힘 메커니즘은 접는 위치(hinge)나 방향이 사전에 고정돼 있어, 환경과 작업이 바뀔 때마다 구조를 새로 설계·제작해야 하는 한계가 있었다. 한국 연구진이 실시간으로 현장에 따라 프로그래밍하는‘접이식 로봇 시트 기술’을 개발해 로봇의 형태 변화 능력을 획기적으로 향상함으로써, 향후 로봇 공학 분야에 새로운 가능성을 열어줄 것으로 기대된다. 우리 대학 기계공학과 김정 교수, 박인규 교수 공동 연구팀이 형상을 실시간으로 프로그래밍할 수 있는 로봇 시트 원천 기술(field-programmable robotic folding sheet)을 개발했다고 6일 밝혔다. 이번 기술은 ‘필드 프로그래밍(field-programmability)&rs
2025-08-06