-
유회준 교수, 딥러닝용 AI 반도체 개발
우리대학 전기및전자공학부 유회준 교수 연구팀이 스타트업 '유엑스 팩토리'와 함께 가변 인공신경망 기술을 적용해 딥러닝을 효율적으로 처리하는 AI 반도체를 개발했다. 딥러닝이란 컴퓨터가 마치 사람처럼 스스로 학습할 수 있도록 인공신경망을 기반으로 구축한 '기계 학습' 기술이다.
유 교수 연구팀이 개발한 새로운 칩은 반도체 안에서 인공신경망의 무게 정밀도를 조절함으로써 에너지 효율과 정확도를 조절한다. 1비트부터 16비트까지 소프트웨어로 간편하게 조절하면서 상황에 맞춰 최적화된 동작을 얻어낸다. 하나의 칩이지만 '콘볼루션 신경망'(CNN)과 '재귀 신경망'(RNN)을 동시에 처리할 수 있다. CNN은 이미지를 분류나 탐지하는 데 쓰이며, RNN은 주로 시간의 흐름에 따라 변화하는 영상과 음성 등 데이터 학습에 적합하다. 또 통합 신경망 프로세서(UNPU)를 통해 인식 대상에 따라 에너지효율과 정확도를 다르게 설정하는 것도 가능하다.
모바일에서 AI 기술을 구현하려면 고속 연산을 '저전력'으로 처리해야 한다. 그렇지 않으면 한꺼번에 많은 정보를 처리하면서 발생하는 발열로 인해 배터리 폭발 등의 사고가 일어날 수 있기 때문이다. 연구팀에 따르면 이번 칩은 세계 최고 수준 모바일용 AI 칩 대비 CNN과 RNN 연산 성능이 각각 1.15배, 13.8배이 달한다. 에너지효율도 40% 높은 것으로 나타났다.
스마트폰 카메라를 통해 사람의 얼굴 표정을 인식해 행복, 슬픔, 놀람, 공포, 무표정 등 7가지의 감정을 자동으로 인식하는 감정인식 시스템도 개발됐다. 이 시스템은 감정 상태를 스마트폰 상에 실시간으로 표시한다. 유 교수 연구팀의 이번 연구는 지난 13일 미국 샌프란시스코에서 열린 국제고체회로설계학회(ISSCC)에서 발표됐다.
유회준 교수는 "기술 상용화에는 1년 정도 더 걸릴 전망"이라며 " 모바일에서 AI를 구현하기 위해 저전력으로 가속하는 반도체를 개발했으며, 향후 물체인식, 감정인식, 동작인식, 자동 번역 등 다양하게 응용될 것으로 기대된다"고 설명했다.
2018.02.26
조회수 18430
-
양찬호 교수, 전기적 위상 결함 제어기술 개발
〈 양 찬 호 교수, 김 광 은 박사과정 〉
우리 대학 물리학과 양찬호 교수 연구팀이 강유전체 나노구조에서 전기적인 위상 결함을 만들고 지울 수 있는 기술을 개발했다.
이 기술을 통해 전기적 위상 결함 기반의 저장 매체를 개발한다면 대용량의 정보를 안정적으로 저장할 수 있을 것으로 기대된다.
이번 연구는 포스텍 최시영 교수, 포항 가속기연구소 구태영 박사, 펜실베니아 주립대학 첸(Long-Qing Chen) 교수, 캘리포니아 대학 라메쉬 교수 등과 공동으로 수행됐다. 김광은 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 26일자에 게재됐다.
위상학은 물체를 변형시켰을 때 물체가 가지는 성질에 대한 연구를 하는 학문으로, 원과 삼각형은 위상학적으로 동일한 물질이라고 할 수 있다.
2016년도 노벨 물리학상 발표 기자회견에서 노벨위원회는 위상학의 개념을 구멍이 한 개 뚫린 베이글 빵, 구멍이 없는 시나몬 빵, 유리컵 등에 비유했다. 시나몬 빵과 유리컵은 다르게 보이지만 구멍이 없다는 점만 따지면 위상학적으로 같은 물질이 된다. 하지만 구멍의 개수가 다른 베이글과 시나몬 빵은 위상학적으로 다른 물질이 되는 식이다.
즉 물질에서 위상학적이라 함은 연속적인 변형으로는 그 특성을 변화시킬 수 없는 절대적인 보존량을 말한다. 이러한 위상학적 특징을 이용해 정보저장 매체를 만들면 외부의 자극으로부터 보존되며 사용자의 의도대로 쓰고 지울 수 있는 이상적인 비휘발성 메모리를 제작할 수 있다.
강유전체와 달리 강자성체(자기적 균형이 깨진 상태, 외부 자기장을 제거해도 자기장이 그대로 남아있음)의 경우는 소용돌이 형태의 위상학적 결함 구조가 이미 구현됐다.
반면 외부 전기장 없이도 스스로 분극을 갖는 강유전체는 자성체에 비해 위상학적 결함 구조를 더 작은 크기로 안정시키고 더 적은 에너지를 이용해 조절할 수 있다는 장점이 있음에도 불구하고 초보적인 연구 단계에 머물러 있었다. 실험적으로 위상학적 결함 구조를 어떻게 안정화시키며 어떠한 방식으로 조절할 것인지에 대한 연구가 부족했기 때문이다.
연구팀은 문제 해결을 위해 강유전체 나노구조에서 비균일한 변형을 줘 위상학적 결함 구조를 안정시키는 데 성공했다. 연구팀은 강유전체 나노접시(ferroelectric nanoplate) 구조를 특정 기판 위에 제작해 접시의 바닥면에는 강한 압축 변형을 주는 동시에 옆면과 윗면은 변형에서 자유로운 구조를 만들었다.
이러한 구조는 방사형으로 압축변형 완화(Compressive strain relaxation)가 일어나 격자의 변형이 오히려 강유전체의 소용돌이 구조를 안정화시키게 된다. 연구팀은 이번 연구가 고밀도, 고효율, 고안정성을 갖춘 위상학적 결함기반 강유전 메모리에 핵심적인 원리를 제시했다고 말했다.
양 교수는 “강유전체는 부도체이지만 위상학적 강유전 준입자가 국소적으로 전자 전도성을 수반할 수 있어 새로운 양자소자 연구로 확대될 수 있을 것이다”고 말했다.
이번 연구는 한국연구재단의 창의연구지원사업, 선도연구센터지원사업, 글로벌프론티어사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 전기적 위상 결함 개수를 조절하여 만든 5가지의 다른 위상 구조
2018.02.08
조회수 37312
-
조용훈 교수, 금속나노구조 이용해 효율 높인 퀀텀닷 LED 개발
우리 대학 물리학과 조용훈 교수 연구팀이 금속나노 배열 구조를 이용해 퀀텀닷(Quantum Dot) 발광다이오드(LED)의 효율을 향상시킬 수 있는 기술을 개발했다.
이 기술을 통해 차세대 디스플레이 기술이 한 단계 발전하는 데 기여할 것으로 기대된다.
현재 사용되는 퀀텀닷 기반의 디스플레이는 청색 LED를 광원으로 사용해 녹색과 적색 퀀텀닷을 여기(勵起, 광자 에너지가 분자로 옮아가 높은 에너지상태로 방출되는 상태)해 색 변환을 하는 방식이다.
이러한 방식은 높은 가격의 퀀텀닷을 이용하기 때문에 디스플레이 소자의 단가가 높아진다. 또한 액체 상태인 퀀텀닷을 소재에 적용하기 위해 공기 중에 말리면 발광 효율이 급격히 저하된다.
연구팀은 문제 해결을 위해 금속 나노구조가 청색 LED의 빛을 받으며 발생하는 국소 표면 플라즈몬 효과를 이용해 퀀텀닷의 발광효율을 증가시켰다. 더불어 발광 휘도를 높일 수 있는 LED 구조를 이론적으로 제시하고 구현하는 데 성공했다.
이 구조는 기본 청색 LED를 여기 광원으로 이용한다. 알루미늄 금속 나노구조와 녹색 퀀텀닷을 여기해 녹색 발광 휘도를 증가시키고, 은 금속 나노구조와 적색 퀀텀닷을 여기해 적색 발광 휘도를 증가시키는 방식이다.
이는 금속 나노구조를 통해 특정 휘도를 얻기 위해 필요한 퀀텀닷의 양을 많이 줄일 수 있다는 의미이고 결과적으로 소재의 단가를 낮출 수 있다.
이번 연구는 소재의 구조를 이론적으로 모델링했기 때문에 목적에 따라 금속 나노구조를 간단하게 새로 디자인해 조절할 수 있다.
조 교수는 “향후 퀀텀닷 디스플레이에 금속 나노구조를 도입하는 기술이 적절히 도입된다면 소재에 필요한 퀀텀닷의 양을 줄이고 효율적인 색 변환을 통해 단가를 줄일 수 있을 것으로 기대된다”고 말했다.
박현철 박사과정이 1저자로 참여한 이번 연구는 나노과학 분야 국제 학술지 ‘스몰(Small)’ 12월 27일자 표지 논문에 선정되었으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small)저널의 12월 27일자 표지 논문 그림
.
그림2. 금속 나노구조가 있을 경우와 없을 경우의 발광 세기 차이를 보인 스펙트럼
2018.01.15
조회수 18035
-
김희탁, 김신현 교수, 물과 기름에 젖지 않는 대면적 표면 개발
〈 최재호 박사과정, 김희탁 교수, 김신현 교수 〉
우리 대학 생명화학공학과 김희탁, 김신현 교수 공동 연구팀이 물과 기름 등에 젖지 않는 저렴한 대면적 표면을 개발했다.
이 기술은 아조고분자의 광유체화 현상을 이용해 초발수성, 초발유성(Super-omniphobic: 물과 기름 등에 젖지 않는 특성) 막을 개발한 것으로 얼룩 및 부식 방지막 개발 등에 다양하게 응용될 것으로 기대된다.
최재호 박사과정이 1저자로 참여한 이번 연구 결과는 나노기술분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 8월호에 게재됐다.
이중요각구조체는 버섯 모양의 구조체를 가진 표면을 뜻한다. 이를 통해 물과 기름처럼 표면에너지가 낮은 액체에 대해 젖지 않는 초발수성, 초발유성(Super-omniphobic)을 갖는다.
하지만 이중요각구조체는 매우 정교한 구조이기 때문에 기존 제작 방식은 여러 단계의 복잡한 공정을 거쳐
야 한다는 단점과 더불어 유연하지 않고 비싼 실리콘 물질 정도만을 제작할 수 있다는 한계가 있었다.
연구팀은 다른 방식으로 이중요각구조체를 제작하기 위해 아조고분자의 독특한 광학적 특성인 국부적 광유체화 현상에 주목했다. 광유체화 현상은 아조고분자가 빛을 받으면 마치 액체처럼 유체화가 되는 현상을 말한다.
이 유체화는 빛을 흡수하는 아조고분자 표면의 얇은 층에서만 부분적으로 일어난다. 연구팀은 이 광유체화 현상을 아조고분자 원기둥 구조에서 일어나게 해 원기둥 윗부분 표면만 선택적으로 흘러내리는 방식으로 버섯 모양의 이중요각구조체를 형성했다.
연구팀이 제작한 구조체의 표면은 매우 낮은 표면에너지를 갖는 액체, 즉 핵산과 같이 표면에 금방 스며들려는 특성을 갖는 액체에도 뛰어난 초발수성, 초발유성을 갖는다. 이 특성은 표면 물질이 고분자 기반이기 때문에 구부러진 상태에서도 유지될 수 있다.
또한 연구팀의 구조체 제작은 아조고분자 원기둥 구조의 틀을 잡고 빛을 조사하는 정도의 간단한 과정만 거치기 때문에 경제적, 실용적으로 큰 장점이 있다.
김희탁 교수는 “이번 연구에서 제안한 새로운 이중요각구조 제작방식을 통해 뛰어난 초발수성, 초발유성 특성을 갖는 표면을 쉽게 제작할 수 있을 것이다”며 “임의의 굴곡을 갖는 표면의 초발수, 초발유성 특성을 부여할 수 있어 생물오손방지 튜브, 얼룩부식 방지 표면 등 다양하게 응용 가능할 것이다”고 말했다.
김신현 교수는 “이번 연구에서 설계한 이중요각구조는 피부로 호흡하며 땅 속에 서식하는 곤충인 톡토기(springtail)의 피부 구조를 모방한 것으로 인간은 자연으로부터 배우고 공학적으로 창조한다는 사실을 다시 한 번 깨달았다”고 말했다.
이번 연구는 KAIST의 엔드 런(End-Run) 프로그램의 지원을 받아 수행됐다.
그림1. 버섯모양의 구조제작 모식도
그림2. 버섯모양 구조의 SEM 이미지
그림3. 다양한 액체들에 대해 superomniphobic 특성을 나타냄을 보여주는 이미지
2017.09.06
조회수 18576
-
김지한 교수, 비정질 다공성 물질의 가스 흡착 성능 분석법 개발
〈 김 지 한 교수 〉
우리 대학 생명화학공학과 김지한 교수 연구팀이 비정질 다공성 물질의 가스 흡착 성능을 예측하는 방법을 개발했다.
이번 연구는 교토대 임대운 교수, 서울대 백명현 교수, 가천대 윤민영 교수, 사우디 아람코 연구소와 공동으로 진행됐다.
정우석 박사과정생과 임대운 교수가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘미국국립과학원회보(PNAS)’ 7월 10일자 온라인 판에 게재됐다.
금속-유기물 구조체(metal-organic framework, MOF)는 넓은 표면적과 풍부한 내부 공극을 가지고 있어 다양한 에너지 및 환경 관련 소재로 응용될 수 있다.
이런 금속-유기물 구조체 물질 대부분이 결정성 물질이지만 합성과정 또는 산업 공정에 사용 중에 구조가 붕괴돼 결정성을 잃기 쉽다. 그로 인해 내부 구조를 파악할 수 없게 되면 기존의 어떠한 컴퓨터 시뮬레이션 방법론으로도 분석이 어려웠다.
김 교수 연구팀은 이와 같이 붕괴된 금속-유기물 구조체의 물성치를 결정성 금속-유기물 구조체의 물성치로 대체해 우회적으로 비정질 구조(amorphous structure)의 다공성 물질에서 물성치 분석이 가능함을 증명했다.
연구팀은 우선 12,000여 개의 결정성 금속-유기물 구조체에 대해 다양한 가스 및 온도 조건에서 가스 흡착 물성치 계산을 수행했다. 이로부터 특정 가스 및 온도 조건에서 비슷한 물성치를 보인 금속-유기물 구조체들은 다른 가스나 온도 조건에서도 비슷한 흡착 성능을 보인다는 것을 보였다.
이러한 결과를 바탕으로 연구팀은 붕괴된 구조가 보이는 메탄가스 흡착성능과 가장 비슷한 물성치를 지닌 결정성 금속-유기물 구조체들을 12,000여 개 구조 중에서 선별했다.
그 후 전혀 다른 온도 및 수소가스 흡착에 있어서도 붕괴된 구조의 실험값과 결정성 금속-유기물 구조정보를 이용한 시뮬레이션 결과가 잘 일치한다는 상호교환성(transferability)를 확인했다.
이번 연구성과는 구조 정보가 없는 경우에도 금속-유기물 구조체와 같은 다공성 물질들에서 물성치를 예측할 수 있어 앞으로 이산화탄소 포집, 가스 분리 및 저장소재 개발에 활용될 것으로 기대된다.
이번 연구는 Saudi Aramco-KAIST CO2 Management Center의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 구조-물성치 맵에 나타나는 경향성과 붕괴된 구조의 경향성
그림2. 붕괴된 금속-유기물 구조체 실험결과와 결정성 금속-유기물 구조체 시뮬레이션 결과의 상호교환성
2017.07.21
조회수 23189
-
박지호 교수, 인공수용체 종양에 전달해 표적치료하는 기술 개발
〈 박 지 호 교수 〉
우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 종양 전체에 인공수용체를 전달해 효과적으로 종양을 표적 치료하는 기술을 개발했다.
김희곤 석박사통합과정이 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 19일자 온라인 판에 게재됐다.
종양 표적치료란 일반적으로 종양의 성장과 발생에 관여하는 특정 분자, 즉 수용체를 표적으로 삼아 종양의 성장을 저해하는 치료를 말한다.
하지만 표적치료는 종양 내 특정 수용체가 존재하는 환자에게만 효과가 있고 표적 분자가 소량이거나 불균일하게 존재할 경우 치료 효과에 한계가 있다.
연구팀은 문제 해결을 위해 리포좀이라는 인공나노입자와 세포에서 자연적으로 분비되는 엑소좀이라는 생체나노입자를 동시에 이용했다. 먼저 세포막과 효율적으로 결합하는 인공나노입자인 세포막결합성 리포좀을 개발했다.
〈 이번 연구를 주도한 김희곤 학생과 오찬희 학생〉
리포좀은 특정 분자를 표적하는 것이 가능한 인공수용체를 싣고 혈류를 통해 종양으로 침투한다. 그리고 혈관 주변의 종양 세포에 인공수용체를 전달하는데 여기서 종양 세포가 분비하는 엑소좀에 인공수용체를 탑재시키는 것이 리포좀의 역할이다.
중요한 점은 세포막결합성 리포좀은 정상 세포보다 암세포에 더 효과적으로 인공수용체를 전달함으로써 종양 표적치료를 용이하게 한다.
엑소좀은 일반적으로 세포 간 여러 생체 분자를 전달하는 역할을 한다. 혈관 주변의 세포를 통해 리포좀에 의해서 전달된 인공 수용체가 엑소좀에 탑재하게 되면 엑소좀이 이동하는 종양 내 모든 위치로 인공 수용체가 자연적이고 효율적으로 전달된다.
연구팀은 이렇게 종양 전체에 퍼진 인공 수용체를 표적할 수 있는 물질에 약물을 결합시켜 효과적인 종양 표적치료를 하는 것을 목표로 삼고 있다.
연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 조사해 항암효과를 유도한 후 분석한 결과 효과적으로 표적치료가 이뤄짐을 확인했다.
연구팀은 이번 연구가 표적이 어렵거나 불가능한 종양 표적치료를 가능하게 하는 기술 개발의 발판을 마련했다는 의의를 갖는다고 밝혔다.
박 교수는 “리포좀은 종양 미세 환경에서 종양세포들이 분비하는 생체나노입자인 엑소좀에 효율적으로 인공수용체를 탑재한다. 그리고 엑소좀은 고유 이동경로를 통해 인공수용체가 종양 전역으로 전달되도록 한다.”며 “표적치료가 어려운 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단의 신진연구자지원사업, 보건복지부의 암정복추진연구개발사업 및 KAIST연구소의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 종양 내 인공수용체 전달을 통한 협동 표적치료를 보여주는 모식도
그림2. 종양 내 인공수용체 전달을 통한 협동 표적을 보여주는 종양 조직 사진
2017.07.06
조회수 21045
-
김용훈 교수, 단일 분자 소자의 전극 계면 특성 규명
〈 김 용 훈 교수와 김후성 박사과정, 김한슬 박사 〉
우리 대학 EEWS 대학원 김용훈 교수 연구팀이 10년 이상 나노 분야 주요 난제로 남아있던 단일분자 전자소자의 금속전극-분자 계면 원자구조와 소자특성 간 상관관계를 규명했다.
이번 연구 성과는 국제 과학 학술지인 ‘미국 화학회지(Journal of the American Chemical Society)’ 6월 21일자에 게재됐다.
단일분자 전자소자는 OLED 등을 통해 알려진 유기소자로서 2003년 미국에서 처음 구현됐다. 분자전자소자(molecular electronics)는 차세대 반도체 소자의 후보군으로 관련 연구들이 활발히 수행되고 있다.
분자를 전자소자로 활용하기 위해선 분자-전극 형태의 원자구조가 구체적으로 어떻게 형성되는지 이해하는 것이 중요하다. 분자 전자소자는 크게 분자, 전극, 둘을 잇는 연결자로 구성된다.
2006년 미국 애리조나 대학의 타오(Nongjian Tao) 교수를 포함한 연구팀은 한 종류의 분자에서 여러 개의 전류 값이 나올 수 있음을 규명했으나 그 전류 값의 크기와 개수, 원인 등은 명확히 밝혀지지 않았다.
특히 그 원인에 대해서는 관련된 분자와 금속전극 간 계면의 원자구조가 여러 가지 형태를 띠고 있기 때문이라는 추측만 있었고 명확히 밝혀지지는 않았다.
김 교수 연구팀은 주사탐침현미경 등을 이용해 단분자 소자가 구현되는 과정을 슈퍼컴퓨터를 활용해 재현했다.
접합 구조의 여러 가지 형태를 찾는 것은 결국 황(S) 원자 주변의 금(Au) 원자 몇 개가 어떤 형태로 배열되는지 확인하는 것인데 이것을 배위수(coordination number)라고 부른다.
〈 김 용 훈 교수와 연구팀 〉
연구팀은 분자와 금속 전극 간 결합의 원자구조 배위수에 따라 금속전극 사이에서 전류 값이 변화하는 것을 확인했다. 또한 분자가 당겨질 때 단순히 금속과 분자 사이 결합이 끊어지는 게 아니라 금속전극의 원자구조가 쉽게 변형돼 결국은 금속과 금속 사이의 결합의 끊어지는 것을 규명했다.
일본 오사카 대학의 카와이(T, Kawai) 교수는 위와 같은 김 교수의 이론을 뒷받침하기 위해 소자 인장에 따른 전류의 증가를 포함하는 실험을 수행했다.
한, 일 공동연구팀은 슈퍼컴퓨터를 이용한 제1원리 계산과 첨단 나노소자 제조 및 측정을 통해 유기 소자의 계면 특성을 원자 수준에서 성공적으로 규명했다. 연구팀은 나노과학-나노기술 분야에서 10년 이상 풀리지 않던 난제를 해결했다.
이번 성과는 향후 OLED, 바이오센서, 유기태양전지 등 다양한 유기소자 분야에 활용 가능할 것으로 기대된다.
김 교수는 “이번 연구는 나노 분야에서 이론 연구가 실험을 선도하는 역할을 성공적으로 수행함을 보여주는 예가 될 것이다”고 말했다.
이번 연구는 미래창조과학부의 중견연구자지원사업, 글로벌프론티어사업, 나노소재기술사업과 KISTI 슈퍼컴퓨터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 분자 전기전도도 실험 측정방법의 개념도
그림2. 대표적인 세 가지 분자-금속전극 접합 원자구조와 이에 상응하는 외력에 따른 전도도 변화 패턴
2017.07.04
조회수 25218
-
이상엽 특훈교수, 병원균이 항생제에 내성을 갖는 원리 규명
〈 이 상 엽 교수 〉
우리 대학 생명화학공학과 이상엽 교수와 덴마크 공대(DTU) 노보 노르디스크 바이오지속가능센터(Novo Nordist Foundation Center for Biosustainability) 공동 연구팀이 박테리아 병원균이 항생제에 대한 내성을 획득하는 작동 원리를 밝혔다.
이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다.
항생제 남용 등으로 인해 항생제 내성균이 점점 더 늘어나고 있다. 이는 인류의 생존을 위협하는 문제로 그 심각성이 전 세계적으로 점점 커지고 있다.
인체 감염균이 항생제 내성을 갖는 방식에는 항생제를 분해하는 효소를 갖거나 다시 뱉어내는 등 다양한 방식이 있다. 그 중 대표적인 것은 항생제 내성 유전자를 획득해 항생제를 무용지물로 만드는 것이다.
내성 유전자는 보통 항생제를 생산하는 곰팡이나 악티노박테리아에서 발견된다. 이는 해당 항생제를 만드는 곰팡이와 박테리아가 자기 스스로를 항생제로부터 보호하기 위해 갖고 있는 것이다.
이 내성 유전자를 인체 감염균이 획득하면 항생제 내성을 갖게 된다. 이러한 사실은 게놈 정보 등을 통해 이미 알려져 있는 사실이다.
그러나 어떤 방식으로 항생제 내성 유전자들이 인체 감염균에 전달되는지는 밝혀지지 않았다.
이상엽 교수와 덴마크 공대 공동 연구팀은 항생제 내성 유전자가 직접적으로 인체 감염균에 전달되는 것이 아니라 연구팀이 캐리백(carry-back)이라고 이름 지은 복잡한 과정을 통해 이뤄지는 것을 규명했다.
우선 인체 감염균과 방선균이 박테리아간의 성교에 해당하는 접합(conjugation)에 의해 인체 감염균의 DNA 일부가 방선균으로 들어간다.
그 와중에 항생제 내성 유전자 양쪽 주위에도 감염균의 DNA가 들어가는경우가 생긴다. 이 상태에서 방선균이 죽어 세포가 깨지면 항생제 내성 유전자와 감염균의 DNA 조각이 포함된 DNA들도 함께 나오게 된다.
이렇게 배출된 항생제 내성 유전자에는 인체 감염균의 일부 DNA가 양쪽에 공존하고 있다. 이 때문에 인체 감염균은 자신의 게놈에 재삽입이 가능해지고 이를 통해 항생제 내성을 획득한다.
연구팀은 생물정보학적 분석과 실제 실험을 통해 이를 증명했다.
이 교수는 “이번 연구결과는 인체 감염 유해균들이 항생제 내성을 획득하는 방식 중 한 가지를 제시한 것이다”며 “병원 내, 외부의 감염과 예방 관리시스템, 항생제의 올바른 사용에 대해 다시 한 번 생각할 수 있는 기회를 제공할 것이다”고 말했다.
이번 연구는 노보 노르디스크 재단과 미래창조과학부 원천기술과(바이오리파이너리를 위한 시스템대사공학 연구사업)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 항생제 내성 유전자가 전달되는 캐리백 현상의 모식도
2017.06.19
조회수 25269
-
방효충 교수 연구팀, 지구 저궤도 관측 큐브위성 궤도진입 및 교신 성공
우리 대학 항공우주공학과 방효충 교수 연구팀이 큐브위성 궤도진입 및 첫 교신을 성공적으로 수행했다.
방 교수 연구팀에서 개발한 LINK(Little Intelligent Nanosatellite of KAIST)는 4월 18일에 발사돼 국제우주정거장으로 배송된 바 있다.
궤도진입은 5월 18일 오전 10시에 NRCSD(NanoRacks CubeSat Deployer)를 통해 이뤄졌으며 한국 시각으로 같은 날 23시 5분 첫 교신에 성공했다. 지상국에서 확인한 큐브위성의 상태는 양호하다.
LINK는 벨기에 Von Karman Institute에서 주관하는 QB50 프로젝트의 일환으로 개발됐다.
QB50는 큰 대기항력 때문에 관측이 덜 이루어진 200~400km 구간의 지구 저궤도 대기를 개발비용이 저렴한 큐브위성을 다수 발사해 관측하고자 하는 국제 공동 프로젝트로 전 세계 23개 이상의 국가에서 참여하고 있다.
LINK는 2unit(20x10x10cm3) 크기로 무게가 약 2kg이며 지구관측을 위해 이온-중성자 질량 분광기 및 랑뮈어 탐침을 탑재하고 있다. 랑뮈어 탐침은 우리 대학 물리학과 민경욱 교수 연구팀이 개발했다.
궤도진입을 마친 큐브위성은 초기 한 달 동안 지상국을 통해 시스템 점검을 수행한 뒤 두 달에 걸쳐 저궤도 대기관측 데이터를 수집할 예정이다.
LINK 큐브위성의 개발은 항공우주연구원 '2012년 큐브위성대회'의 지원을 받아 이뤄졌다.
□ 그림 설명
그림1. NRCSD(NanoRacks CubeSat Deployer) 큐브위성 사출 장면
그림2. LINK 비콘신호 수신
2017.05.24
조회수 17080
-
방효충 교수, 지구 저궤도의 관측 위한 큐브위성 발사
우리 대학 항공우주공학과 방효충 교수 연구팀이 지구 저궤도 관측을 위한 초소형 큐브위성을 발사했다.
방 교수 연구팀에서 개발한 큐브위성인 LINK(Little Intelligent Nanosatellite of KAIST)를 포함한 총 28개의 큐브위성이 아틀라스 V(Atlas V) 발사체(NASA CRS-7 미션)에 탑재돼 미 동부시간 4월 18일 오전 11시 11분에 미국 Space Launch Complex 41에서 성공적으로 발사됐다.
큐브위성들은 국제우주정거장에서 보관 후 약 한 달 뒤에 궤도 진입 예정이며 이후 약 3달 동안 과학임무를 수행한다.
LINK는 벨기에의 Von Karman Institute에서 주관하는 QB50 프로젝트의 일환으로 개발됐다.
QB50 프로젝트는 큰 대기항력 때문에 관측이 덜 이뤄진 200~400km 구간의 지구 저궤도 대기를 개발비용이 저렴한 큐브위성을 다수 발사해 관측하는 국제 공동 프로젝트이다. 2012년에 시작된 이 프로젝트는 전 세계 23개 이상의 국가가 참여하고 있다.
LINK는 2유닛(20x10x10㎤) 크기로 무게는 2kg 정도이며 지구 관측을 위해 이온-중성자 질량 분광기 및 랑뮈어 탐침을 탑재했다. 랑뮈어 탐침은 우리 대학 물리학과 민경욱 교수 연구팀이 개발했다.
방 교수는 “QB50 프로젝트는 교육용으로만 쓰이던 큐브위성이 의미있는 과학임무를 수행하기 위한 도구로 도약하는 계기가 될 것이다”며 “다수의 큐브위성을 이용해 저궤도 대기 관측을 한 첫 사례로 의미있는 데이터를 얻을 것으로 기대한다”고 말했다.
또한 “이 노하우를 이용해 앞으로 위성을 추가 개발해 연구 내용을 우주에서 직접 검증할 수 있을 것이다”고 말했다.
현재 큐브위성을 실은 Cygnus 모듈이 궤도에서 대기 중이며 미 동부시간 4월 22일 오전 8시 39분 국제우주정거장과 도킹을 완료했다.
2017.04.24
조회수 19660
-
한동수 교수, 크라우드소싱 기반 실내 위치인식 시스템 개발
〈 한 동 수 교수 〉
우리 대학 전산학부 한동수 교수 연구팀(지능형 서비스통합 연구실)이 실내 공간에서 획득한 와이파이 신호의 수집 위치정보를 자동으로 파악할 수 있는 기술을 개발했다.
이 기술은 글로벌 실내 위치인식 시스템 구축에 필요한 핵심 기술로 다수의 스마트폰에서 수집된 무선랜 핑거프린트의 수집 위치를 자동으로 라벨링하는 인공지능 기법이다. 비용을 절감하면서 높은 정확도를 가질 수 있고 무선랜 핑거프린트 수집이 가능한 건물이라면 어느 곳에도 적용 가능하다.
여러 글로벌 기업들이 실내 GPS를 실현하기 위해 전 세계 주요도시에서 수만 건의 실내 지도를 수집했다. 실내 지도와 함께 신호 지도 수집도 시도했지만 높은 정확도를 갖지 못했고 그 결과 실내에서의 위치 인식 서비스 질이 떨어진다.
연구팀은 문제 해결을 위해 실내를 이동 공간과 체류 공간으로 구분하고 각각의 공간에 최적화된 수집 위치 라벨링을 자동화하는 기술을 개발했다.
연구팀이 개발한 기술은 복도, 로비, 계단과 같은 이동 공간에서도 수집된 신호의 위치정보를 별도의 외부 정도 없이도 자동으로 라벨링하는 새로운 자율학습(Unsupervised Learning) 인공지능 기술이다.
이 기술을 토대로 기초실험연구동(N5)과 김병호-김삼열IT융합빌딩(N1)에서 실험을 실시했고, 충분한 양의 학습 데이터가 주어진다는 가정 하에 오차범위 3~4미터 수준의 정확도를 보였다.
이는 수작업을 통해 수집 위치를 라벨링한 결과와 비슷한 정확도로 연구팀이 함께 개발한 지자기 신호, 3축 가속기, 자이로스코프 기반의 딥러닝을 활용한 새로운 센서 퓨전 기법을 통하면 정확도가 더욱 상승하는 결과를 보였다.
그 동안 스마트폰을 통해 수집된 핑거프린트는 활용되지 못하고 버려졌지만 개발된 기술을 통해 무선랜 핑거프린트 빅데이터 영역이 새롭게 열릴 것으로 기대된다.
개발된 GPS 구축 기술은 글로벌 기업이나 국내 위치정보 서비스 기업 등이 전국 범위에서 위치정보 서비스를 제공할 때 도입해 효과적으로 사용할 수 있을 것으로 예상된다.
GPS 신호가 도달하지 않는 실내 환경에서 위치인식 정확도가 높아짐에 따라 포켓몬고 등의 O2O(online to offline) 위치기반 게임도 실내에서 실행 가능할 것으로 기대된다.
또한 다양한 위치기반 SNS, 사물인터넷 등 서비스가 활성화되고 위급한 상황에서 112나 119에 구조요청을 할 시 정확한 위치 파악이 가능할 것으로 보인다.
한 교수는 “개발된 글로벌 실내 위치인식 시스템 구축 기술을 KAIST 실내 위치인식 시스템인 카이로스(KAILOS)에 탑재해 서비스 할 예정이다”며 “전 세계 어느 건물에서든 정확도 높은 실내 위치인식 시스템을 손쉽게 구축할 수 있고 장래에 대부분 실내 공간에서도 위치인식 서비스가 제공 가능할 것이다”고 말했다.
카이로스는 2014년 KAIST에서 출시한 개방형 실내 위치인식 서비스 플랫폼이다. 자신이 원하는 건물의 실내지도를 카이로스에 등록하고 해당 건물의 핑거프린트를 수집해 실내 위치인식 시스템을 구축하도록 지원 중이다.
□ 그림 설명
그림1. 핑거프린트를 수집하여 신호지도를 구축한 뒤, 구축된 신호지도를 기반으로 위치를 추정하는 과정
그림2. KAILOS가 여러 가지 신호와 센서를 복합적으로 사용하였을 때 예상되는 정확도
2017.04.12
조회수 20063
-
성형진 교수, 미세유체칩 내 액적 위치 제어 기술 개발
우리 대학 기계공학과 성형진 교수 연구팀(유동제어연구실)이 열모세관 현상을 이용해 미세유체칩 내 액적의 위치를 정교하게 제어하는 기술을 개발했다.
박진수 박사과정이 1저자로 참여한 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체기술 및 마이크로타스(microTAS) 분야의 국제학술지인 랩온어칩(Lab on a Chip)지 2017년 6호의 표지논문으로 선정됐다.
(논문명: Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip)
극소량의 유체 샘플을 이용해 동전만한 크기의 미세유체칩 내에서 복잡한 실험을 수행하기 위해서는 정교한 미세유체 기술이 필요하다.
특히 서로 섞이지 않는 두 유체로 구성된 액적을 기반으로 하는 미세유체역학 분야에서 액적의 위치를 정교하게 제어할 수 있는 기술이 필수적이다.
하지만 기존의 액적위치 제어기술은 한 쪽 방향으로만 제어할 수 있거나 마이크로 크기 수준에서는 정교하게 제어하지 못했다.
연구팀은 독자적으로 개발한 음향열적가열법을 통해 마이크로 수준의 동적 온도구배를 형성했고 이를 통해 미세유체칩 내에서 액적의 위치를 마이크로 크기 수준에서 정교하게 제어했다.
궁극적으로는 원하는 배출 유로로 액적을 분리할 수 있음을 증명했다.
성형진 교수 연구팀은 그동안 광력과 음향력 기반의 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제 학술지에 300여 편의 논문을 게재한 바 있다.
이번 연구는 한국연구재단의 창의연구지원사업, 글로벌박사펠로우십과 KAIST-KUSTAR의 지원으로 수행됐다.
박진수 박사과정은 “본 연구에서 개발된 기술은 액적의 양쪽에서 서로 반대방향으로 작용해 균형을 이루는 열모세관 힘을 이용해 액적의 위치를 마이크로스케일에서 정교하게 제어할 수 있다”고 말했다.
성 교수는 “본 연구에서 개발된 기술이 액적 기반 미세유체칩 내 생화학반응, 제약, 물질 합성 등에 널리 활용될 수 있을 것으로 기대된다”고 말했다.
□ 그림 설명
그림1. 랩온어칩 표지
2017.03.20
조회수 23859