< 허원도 교수, 김나연 박사 >
빛으로 세포 내 특정 RNA 이동과 단백질 합성을 조절할 수 있는 기술이 개발됐다. 생명과학과 허원도 교수 연구팀이 빛을 이용해 유전정보를 전달하는 전령RNA와 단백질을 생성하는 리보솜의 결합을 제어해 단백질 합성을 조절하는데 성공했다.
이번 연구성과는 네이처 셀 바이올로지(Nature Cell Biology, IF 17.728)에 2월 18일 오전 1시(한국시간)자 온라인 판에 실렸으며, Nature Reviews Genetics에 하이라이트 논문으로 소개됐다.
DNA의 유전정보는 RNA를 거쳐 단백질로 전달된다. 이때 중간에서 유전정보를 전달하는 RNA를 ‘전령RNA’라고 한다. 단백질 생성공장인 리보솜이 전령RNA의 유전정보를 읽어 단백질을 합성한다. 단백질 합성에 있어 전령RNA는 DNA 유전정보의 중간 전달자, 리보솜은 생성공장, 단백질은 완성품인 셈이다.
이전에는 화학물질을 처리해 전령RNA를 조절하는 방법으로 모든 전령RNA를 한꺼번에 조절하기 때문에 특정 종류의 전령RNA만을 세밀하게 조절하기 어려웠다. 이번 연구에서는 살아있는 세포에 청색광을 비춰줌으로써 세포 내 특정 전령RNA 이동 및 단백질 합성을 시공간 특이적으로 조절하는 mRNA-LARIAT 광유전학 기술을 개발했다.
연구팀은 이전 연구로 개발한 라리아트 올가미(LARIAT, Light-Activated Reversible Inhibition by Assembled Trap) 기술과 RNA 이미징 기술을 융합해 mRNA-LARIAT 기술을 개발했다. mRNA-LARIAT 광유전학 기술을 이용하면 빛의 유무에 따라 라리아트 올가미에 전령RNA를 가두거나 분리하고, 이를 실시간으로 관찰하는 것이 가능하다.
연구팀은 헬라 세포에 청색광을 비춰주면 라리아트 올가미에 전령RNA가 가둬지면서 리보솜과 격리되고 단백질 합성이 감소함을 관찰했다. 이어 청색광을 차단하면 라리아트 올가미로부터 전령RNA가 빠져나오면서 리보솜과 단백질 합성을 다시 시작함을 확인했다. 이는 mRNA-LARIAT 광유전학 기술로 빛의 유무에 따라 매우 빠르고 가역적으로 단백질 합성을 조절할 수 있음을 의미한다.
대부분 단백질은 전령RNA와 리보솜에 의해 합성된 후, 각 단백질이 작용하는 위치로 이동한다. 하지만 전령RNA가 라리아트 올가미에 가둬지면 전령RNA가 향후 단백질이 작용하는 위치까지 이동이 멈추고 단백질 합성이 차단된다. 전령RNA는 단백질보다 비교적 작은 분자로, 세포 내 이동이 더 효율적이고 빠르다. 이처럼 mRNA-LARIAT 광유전학 기술로 전령RNA 이동 및 단백질 합성을 빛으로 조절하면 살아있는 세포에서의 RNA의 위치 및 합성되는 신생 단백질의 기능을 효율적으로 연구할 수 있게 되었다.
연구팀은 베타액틴(β-actin) 단백질 합성에 관여하는 전령RNA에 mRNA-LARIAT 기술을 적용했다. 베타액틴 단백질 합성에 관여하는 전령RNA에 청색광을 비추니 세포 골격 구성 및 이동 기능이 제대로 이뤄지지 않음을 관찰했다. 또한 베타액틴 단백질 합성 효율이 최대 90%까지 감소됨을 확인했다.
허원도 교수는 “mRNA-LARIAT 광유전학 기술을 활용하면 암세포, 신경세포 등 다양한 세포 내 전령RNA 이동 및 단백질 합성을 빛으로 조절할 수 있다”라며 “앞으로 암세포 전이, 신경질환 등 전령 RNA 관련 질병 연구에 응용 가능할 것이다”라고 말했다.
< mRNA-LARIAT 광유전학 기술로 전령RNA(mRNA)의 이동과 단백질 합성을 조절하는 모식 >
< mRNA-LARIAT 광유전학 기술로 단백질 합성 저해 >
< mRNA-LARIAT 광유전학 기술로 단백질 합성 저해 >
< 베타액틴(β-actin) 단백질과 세포의 이동 기능과의 상관관계 >
< 새롭게 형성된 β-actin 단백질의 세포이동 기능과의 상관관계 >
기존의 ‘광유전학적 분자 응축물 기술(생체 분자를 빛을 사용해 특정한 덩어리(응축체)로 뭉치게 하거나 풀리게 조절하는 기술)’은 세포 안에서 여러 단백질이나 RNA가 다양하게 섞이기 때문에 원하는 분자만 골라서 다루기 어렵다는 한계가 있었다. 이 한계를 넘어, 우리 연구진이 ‘빛’을 쪼여 세포 속 특정 단백질이나 유전정보(mRNA)를 원하는 시점에 꺼내 쓸 수 있는 기술을 개발하여 유전자 조절 기술, 신약 개발 등에서의 새로운 가능성을 제시했다. 우리 대학 생명과학과 허원도 석좌교수 연구팀이 물리학과 박용근 석좌교수 연구팀과 협력하여, 단백질 및 mRNA를 세포 내에서 빛으로 원하는 시점에 저장(Store)하고 방출(Release)할 수 있는 ‘릴리저 기술(RELISR, REversible Light-Induced Store and Release)’을 개발했다고 23일 밝혔다. 이번 연구는 세포 내 다양한 생
2025-07-23원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다. 우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다. 최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적
2025-07-02임산부의 입덧 완화 목적으로 사용됐던 약물인 탈리도마이드(Thalidomide)는 생체 내에서는 광학 이성질체*의 특성으로 한쪽 이성질체는 진정 효과를 나타내지만, 다른 쪽은 기형 유발이라는 심각한 부작용을 일으킨다. 이런 예처럼, 신약 개발에서는 원하는 광학 이성질체만을 선택적으로 합성하는 정밀 유기합성 기술이 중요하다. 하지만, 여러 반응물을 동시에 분석하는 것 자체가 어려웠던 기존 방식을 극복하고, 우리 연구진이 세계 최초로 21종의 반응물을 동시에 정밀 분석하는 기술을 개발해, AI와 로봇을 활용하는 신약 개발에 획기적인 기여가 기대된다. *광학 이성질체: 동일한 화학식을 가지며 거울상 관계에 있으면서 서로 겹칠 수 없는 비대칭 구조로 존재하는 분자 쌍을 말한다. 이는 왼손과 오른손처럼 형태는 유사하지만 포개어지지 않는 관계와 유사하다. 우리 대학 화학과 김현우 교수 연구팀이 인공지능 기반 자율합성* 시대에 적합한 혁신적인 광학이성질체 분석 기술을 개발했다고 16일
2025-06-16RNA 유전자 가위는 코로나바이러스와 같은 바이러스의 RNA를 제거하여 감염을 억제하거나 질병 원인 유전자 발현을 조절할 수 있어, 부작용이 적은 차세대 유전자 치료제로 크게 주목받고 있다. 우리 연구진은 세포 내 존재하는 수많은 RNA(유전 정보를 전달하고 단백질을 만드는 데 중요한 역할을 하는 분자) 중에서 원하는 RNA만을 정확하게 찾아서 아세틸화(화학 변형)할 수 있는 기술을 세계 최초로 개발했고, 이는 RNA 기반 치료의 새 장을 열 수 있는 핵심 기술이 될 것으로 기대된다. 우리 대학 생명과학과 허원도 석좌교수 연구팀이 최근 유전자 조절 및 RNA 기반 기술 분야에서 각광받는 RNA 유전자 가위 시스템(CRISPR-Cas13)을 이용해 우리 몸 안의 특정한 RNA에 아세틸화를 가할 수 있는 혁신적 기술을 개발했다고 10일 밝혔다. RNA는 ‘화학 변형(chemical modification)’이란 과정을 통해 그 특성과 기능이 변화할 수 있
2025-06-10팬데믹 이후에도 다양한 신종 감염병이 출현하며 우리는 여전히 강력하고 지속적인 면역 방어를 요구하는 바이러스 위협에 직면해 있다. 동시에 과잉으로 면역 체계가 반응하면 오히려 몸의 조직을 해치는 부작용이 생기기도 한다. KAIST·국제 연구진이 이런 바이러스에 면역 반응을 조절하는 스위치 역할의 단백질을 찾아내는데 성공했다. 향후 감염병 대응과 자가면역질환 치료의 새로운 기반을 마련할 것으로 기대된다. 우리 대학 생명화학공학과 김유식 교수와 미국 플로리다주립대 차승희 교수 공동 연구팀이 세포 내 미토콘드리아에서 유래한 이중나선 RNA가 면역반응을 증폭시키는 메커니즘을 규명하고, 이를 조절하는 단백질 슬러프(SLIRP)가 바이러스 감염과 자가면역질환 양쪽에서 ‘면역 스위치’ 역할을 수행하는 것을 밝혀냈다. 자가면역질환은 면역 체계가 외부 침입자와 자기 조직을 구분하지 못하고 스스로를 공격하는 질환으로, 쉐그렌 증후군, 전신홍반루푸스 등으로 아
2025-05-14