본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4%ED%95%84%EB%A6%84
최신순
조회순
슈퍼박테리아 방패 ‘바이오필름’ 무력화 치료 플랫폼 개발
병원 내 감염의 주요 원인 중 하나로 알려진 슈퍼박테리아 ‘메티실린 내성 황색포도상구균(MRSA, 이하 포도상구균)’은 기존 항생제에 대한 높은 내성뿐 아니라 강력한 미생물막인 바이오필름(biofilm)을 형성함으로써 외부 치료제를 효과적으로 차단한다. 이에 우리 연구진은 국제 연구진과 함께 미세방울(microbubble)을 이용해 유전자 표적 나노입자를 전달하여 바이오필름을 무너뜨리고 기존 항생제가 무력한 감염증에 대한 혁신적 해결책을 제시하는 플랫폼 개발에 성공했다. 우리 대학 생명과학과 정현정 교수 연구팀이 미국 일리노이대 공현준 교수팀과의 공동연구를 통해, 포도상구균이 형성한 세균성 바이오필름을 효과적으로 제거하기 위해 유전자 억제제를 세균 내부로 정확하게 전달하는 미세방울 기반 나노-유전자 전달 플랫폼(BTN‑MB)를 개발했다고 29일 밝혔다. 연구팀은 먼저, 포도상구균의 주요 유전자 3종<바이오필름 형성(icaA), 세포 분열(ftsZ), 항생제 내성(mecA)>을 동시에 억제하는 짧은 DNA 조각(oligonucleotide)을 설계하고, 이를 탑재해 균내로 효과적으로 전달할 수 있는 나노입자(BTN)를 고안했다. 여기에 더해, 미세방울(microbubble, 이하 MB)을 사용해 포도상구균이 형성한 바이오필름인 미생물막의 투과성을 높인다. 연구팀은 두 가지 기술을 병용해, 세균의 증식과 내성 획득을 원천적으로 차단하는 이중 타격 전략을 구현했다. 이 치료 시스템은 두 단계로 작동한다. 먼저, 미세방울(MB)이 포도상구균이 형성한 세균성 생체막내 압력 변화로 나노입자(BTN)의 침투를 가능하게 만든다. 이어서, BTN이 생체막의 틈을 타 세균 내부로 침투해 유전자 억제제를 정확하게 전달한다. 이를 통해 포도상구균의 유전자 조절을 일으켜 생체막 재형성, 세포 증식, 그리고 항생제 내성 발현이 동시에 차단된다. 돼지 피부 감염 생체막 모델과 포도상구균 감염 마우스 상처 모델에서 시행한 실험 결과, BTN‑MB 치료군은 생체막 두께가 크게 감소했으며, 세균 수와 염증 반응도 현저히 줄어드는 뛰어난 치료 효과를 확인할 수 있었다. 이러한 결과는 기존 항생제 단독 치료로는 달성하기 어려운 수준이며, 향후 다양한 내성균 감염 치료에도 적용할 수 있는 가능성을 보여준다. 연구를 주도한 정현정 교수는 “이번 연구는 기존 항생제로는 해결할 수 없는 슈퍼박테리아 감염에 대해 나노기술, 유전자 억제, 물리적 접근법을 융합해 새로운 치료 해법을 제시한 것”이라며, “향후 전신 적용 및 다양한 감염 질환으로의 확장을 목표로 연구를 지속할 것”이라고 설명했다. 해당 연구는 우리 대학 생명과학과 정주연 학생과 일리노이대 안유진 박사가 제1 저자로 참여했으며, 국제학술지‘어드밴스드 펑셔널 머터리얼스(Advanced Functional Materials)’에 5월 19일 자로 온라인 게재됐다. ※ 논문 제목: Microbubble-Controlled Delivery of Biofilm-Targeting Nanoparticles to Treat MRSA Infection ※ DOI: https://doi.org/10.1002/adfm.202508291 한편, 이번 연구는 한국연구재단과 보건복지부의 지원을 받아 수행됐다.
2025.05.29
조회수 655
최원호 교수, 플라즈마로 바이오필름 제거 기술 개발
〈 박 주 영 박사과정, 최 원 호 교수, 박 상 후 박사 〉 우리 대학 물리학과 최원호 교수, 서울대 조철훈 교수 공동 연구팀이 대기압 저온 플라즈마를 통해 페트병 등 식품 보관 용기 표면에 존재하는 대장균, 박테리아 등 일명 바이오필름을 손쉽게 제거할 수 있는 기술을 개발했다. 이는 플라즈마를 물에 처리해 활성화시켜 발생하는 화학반응을 이용해 바이오필름을 제거하는 방식으로 기존 기술보다 안전하고 손쉬워 다양한 용도로 사용 가능할 것으로 기대된다. 박상후 박사, 박주영 박사과정이 공동 1저자로 참여한 이번 연구는 재료분야 국제 학술지 ‘미국화학회 어플라이드 머티리얼즈&인터페이시스(ACS Applied Materials & Interfaces)’ 2017년도 12월 20일자에 게재됐다. 대기압 플라즈마는 대기 중에서 여러 형태로 플라즈마 및 2차 생성물을 방출할 수 있는 장점을 갖는다. 번개도 플라즈마의 일종인데 번개를 통해 공기 중 질소가 질소화합물이 돼 땅 속에 스며들어 토양을 비옥하게 만드는 것이 대표적인 사례이다. 이런 장점을 활용해 플라즈마는 에너지 및 환경 분야부터 생의학 분야까지 다양한 연구와 산업분야에 응용되고 있으며 플라즈마의 반응성 및 활용성을 높이기 위한 연구들이 전 세계적으로 활발히 진행 중이다. 최근에는 의료기술, 식품, 농업 등 다양한 분야에 살균을 목적으로 한 활성화, 기능화 등 측면에서 대기압 플라즈마를 적용하고 있다. 그러나 대기압 플라즈마로부터 발생하는 활성종의 종류, 밀도, 역할 등은 현재까지도 명확하게 밝혀지지 않아 기술을 적용하는 데 큰 어려움이 있었다. 연구팀은 플라즈마를 물에 처리시켜 활성수로 만들어 대장균, 살모넬라, 리스테리아 등 유해한 미생물이 겹겹이 쌓여 막을 이룬 형태를 뜻하는 바이오필름을 제거하는 방법을 개발했다. 플라즈마를 처리할 때 발생하는 활성종은 수산기(하이드록시기, OH*), 오존, 과산화수소, 아질산이온, 활성산소 등이다. 연구팀은 그 중 수산기가 다른 활성종에 비해 100 배에서 1만 배 낮은 농도임에도 불구하고 산화력이 높아 바이오필름 제거에 큰 역할을 하는 것을 확인했다. 연구팀은 그 외에 발생된 오존, 과산화수소, 아질산 이온 등에 대해서도 바이오필름을 제거할 수 있는 기능이 있음을 정량적으로 증명했고 이를 통해 살균제로서 대기압 플라즈마의 역할을 규명했다. 연구팀은 향후 후속 연구를 통해 플라즈마로 수산기를 효율적으로 생산할 수 있는 기술을 개발할 예정이다. 최 교수는 2013년 플라즈마 발생이 가능한 포장재를 특허로 등록했고 지도학생 창업기업인 플라즈맵에 기술이전을 완료했다. 이번 연구를 통해 플라즈마 살균 기술의 상용화에 힘쓰는 중이다. 최 교수는 “이번 연구결과는 플라즈마 제어 기술과 플라즈마-미생물 간 물리화학적 상호작용을 이해하는데 유용한 기반이 될 것이다”며 “의학, 농업, 식품 분야에서의 플라즈마 기술의 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다. 이번 연구는 국가핵융합연구소의 미래선도 플라즈마-농식품 융합기술 개발 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1.플라즈마 발생이 가능한 포장재 그림2.대기압 플라즈마를 이용한 바이오필름 저감 실험 개략도 그림3.대기압 플라즈마 적용 개념도 및 핵심요소 평가 결과 그림4.스타트업 기업인 플라즈맵(Plasmapp)에서 시판중인 STERPACK 제품
2018.01.23
조회수 20686
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1