-
에탄이 온실가스 줄이고, 플라스틱도 만든다고요?
메탄은 이산화탄소(CO₂)보다 약 25배 강한 온실가스로, 기후변화 대응에서 가장 시급한 감축 대상 중 하나로 천연가스, 매립지 가스, 축산·폐수 처리 등 다양한 배출원에서 종종 에탄과 혼합된 형태로 존재한다. 천연가스 중 에탄도 큰 비중을 차지하며, 메탄 다음으로 최대 15%까지 포함돼 있다. 우리 연구진이 에탄이 이런 메탄을 에너지원으로 사용하는 ‘편성 메탄산화균’의 대사에 영향을 줘서 메탄을 저감시키고 바이오플라스틱 생산에 활용할 가능성을 제시했다.
우리 대학 건설및환경공학과 명재욱 교수 연구팀이 미국 스탠퍼드 대학교와의 공동연구를 통해, 천연가스의 주요 부성분인 에탄(C2H6)이 ‘편성 메탄산화균(Methylosinus trichosporium OB3b)’의 핵심 대사에 미치는 영향을 규명했다고 7일 밝혔다.
메탄산화균은 산소가 있는 조건에서 메탄을 에너지원으로 사용해 생장할 수 있는 세균으로, 이 중 ‘편성(obligate) 메탄산화균’은 메탄이나 메탄올과 같은 C1 화합물만을 성장 기질로 활용하는 것이 특징이다. 지금까지 이러한 편성 메탄산화균이 비(非)성장 기질인 에탄에 어떻게 반응하는지에 대한 연구는 이뤄지지 않았다.
연구팀은 이번 연구에서는 C2 기질인 에탄이 성장 기질로 사용되지 않음에도 불구하고, 편성 메탄산화균의 메탄 산화, 세포 성장, 생분해성 고분자인 폴리하이드록시부티레이트(Polyhydroxybutyrate, 이하 PHB) 합성 등 주요 대사 경로에 유의미한 영향을 미친다는 사실을 밝혀냈다.
연구팀이 다양한 메탄 및 산소 농도 조건에서 에탄을 첨가해 메탄산화균을 배양한 결과, ▲세포 성장 억제 ▲메탄 소비 감소 ▲PHB 합성 증가의 세 가지 대사 반응이 일관되게 나타났으며, 이러한 변화는 에탄 농도가 증가할수록 더욱 두드려졌다.
이번 연구에 따르면, 에탄은 단독으로는 메탄산화균에서 반응하지 않으며, 세균 역시 에탄만 주어졌을 때는 성장하지 않는다. 그러나 메탄과 함께 존재할 경우, 메탄을 산화하는 핵심 효소 ‘입자상 메탄모노옥시게네이스(pMMO)’를 통해 에탄이 함께 산화되는 ‘동시 산화(co-oxidation)’현상이 관찰됐다.
에탄이 산화되는 과정에서 생성되는 중간 대사산물 ‘아세테이트(acetate)’는 메탄산화균의 세포 성장을 억제하는 동시에, PHB(Polyhydroxybutyrate) 생산을 촉진하는 것으로 나타났다. PHB는 생분해성 바이오플라스틱의 원료로 주목받는 고분자 물질이다.
이러한 작용은 균이 처한 영양 상태에 따라 상반된 양상을 보인다. 영양이 충분한 상태에서는 에탄이 세포 성장에 부정적인 영향을 미치지만, 영양 불균형 상태에서는 오히려 PHB 축적을 유도해 긍정적인 효과를 나타낸다.
한편, 에탄을 첨가했을 때 메탄의 소비량은 감소했지만, 메탄 분해 효소인 pMMO를 구성하는 pmoA 유전자의 발현량에는 유의미한 변화가 없었다. 이는 에탄이 유전자의 전사(transcription) 수준에서는 영향을 미치지 않으며, 대신 효소의 실제 작동 능력(활성 수준)이나 전사 이후 조절 단계에서 영향을 준다는 사실을 입증한다.
연구팀은 에탄이 메탄산화균의 대사 흐름을 간접적으로 조절하는 조절자 역할을 하며, 메탄과 함께 있을 때 의도치 않은 방식으로 세포 성장과 PHB 생산에 영향을 미친다고 분석했다.
명재욱 교수는 “이번 연구는 ‘편성 메탄산화균’이 단일 기질 환경이 아닌 에탄과의 복합 기질 조건에서 어떻게 대사적으로 반응하는지를 체계적으로 규명한 최초의 사례”라며, “에탄과 같은 비성장 기질이 메탄 대사와 생분해성 고분자 생산에 미치는 영향을 밝힘으로써, 생물학적 메탄 저감 기술뿐 아니라 바이오플라스틱 생산에도 새로운 가능성을 제시한다”라고 전했다.
건설및환경공학과 박사과정 박선호 학생이 제1 저자인 이번 연구는 환경미생물학 및 생명공학 분야의 권위 있는 미국미생물학회(American Society for Microbiology) 학회지인 국제 학술지 응용 환경미생물학(Applied and Environmental Microbiology)에 7월 10일 자로 게재됐다.
※ 논문명: Non-growth substrate ethane perturbs core methanotrophy in obligate methanotroph Methylosinus trichosporium OB3b upon nutrient availability
(저자 정보 : 박선호(KAIST, 제1 저자), Chungheon Shin(Standford University), Craig S. Criddle (Standford University), 명재욱(KAIST, 교신저자) 총 4명)
※ DOI: 10.1128/aem.00969-25
한편, 이번 연구는 한국연구재단, 국토교통부, 해양수산부의 지원을 받아 수행됐다.
2025.08.07
조회수 489
-
3분 만에 질병 현장 진단..효소모방촉매 반응 38배 향상
급성 질병의 조기 진단과 만성 질환의 효율적 관리를 위해, 환자 가까이에서 신속하게 진단할 수 있는‘현장진단(Point-of-Care, POCT)’기술이 전 세계적으로 주목받고 있다. POCT 기술의 핵심은 특정 물질을 정확히 인식하고 반응하는‘효소’에 있다. 그러나 기존의 ‘자연효소’는 고비용·불안정성의 한계를 지니며, 이를 대체하는 ‘효소 모방 촉매(nanozyme)’ 역시 낮은 반응 선택도라는 문제를 안고 있다. 최근 국내 연구진은 기존 효소모방촉매보다 38배 이상 향상된 선택도를 구현하고, 단 3분 만에 육안으로 진단 결과를 확인할 수 있는 고감도 센서 플랫폼을 개발하는 데 성공했다.
우리 대학 생명화학공학과 이진우 교수 연구팀이 서울대학교 한정우 교수, 가천대학교 김문일 교수 연구팀과의 공동연구를 통해, 과산화효소 반응만을 선택적으로 수행하면서도 높은 반응 효율을 유지하는 새로운 단일원자 촉매를 개발했다고 28일 밝혔다.
혈액, 소변, 타액 등 인체 유래 체액을 이용해 병원 밖에서도 수 분 내 판독할 수 있는 진단 플랫폼으로 의료 접근성을 크게 높이고, 치료의 시의성을 확보할 수 있는 현장진단 기술의 핵심은 효소를 이용해 질병 진단 물질인 바이오마커를 색 변화를 통해 시각적으로 알아낼수 있다는 점이다. 그러나 자연 효소를 이용할 경우 가격이 높고 진단 환경에서 쉽게 불안정해져 보관 및 유통의 한계가 있다.
이 문제를 해결하기 위해 새로운 무기 소재 ‘효소 모방 촉매(nanozyme)’가 개발되어 왔으나 반응의 선택도가 낮다는 한계를 안고 있다. 과산화수소를 기질로 활용할 경우, 하나의 촉매가 동시에 과산화효소(색 변화 유도) 반응과 카탈레이스(반응 기질 제거) 반응을 함께 일으켜 진단 신호의 정확도가 낮아지는 문제가 있다.
연구팀은 촉매의 반응 선택성을 원자 수준에서 제어하기 위해, 촉매 중심 금속인 ‘루테늄(Ru)’에 금속과 결합해 화학적 성질을 조절하는 ‘염소(Cl) 리간드’를 3차원 방향으로 결합하는 ‘독창적 구조 설계 전략’을 활용하여 정확한 진단 신호만을 검출하는데 성공했다.
실험 결과, 이번에 개발한 촉매는 기존 효소 모방 촉매 대비 38배 이상 향상됐으며, 과산화수소 농도에 따른 반응 민감도와 속도 또한 눈에 띄게 증가했다. 특히 생체 체액의 조건에 가까운 환경(pH 6.0)에서도 반응 선택성과 활성을 안정적으로 유지해, 실제 진단 환경에서의 적용 가능성도 입증했다.
연구팀은 개발한 촉매에 산화효소를 담아 종이 센서에 적용함으로써 산화효소-효소모방촉매 연계 반응을 통해, 우리 몸의 건강상태를 알려주는 바이오마커에 해당하는 ‘포도당, 젖산(락테이트), 콜레스테롤, 콜린’ 등 4종의 바이오마커를 동시에 검출할 수 있는 진단 시스템을 구현했다.
다양한 질병 진단에 범용 적용이 가능한 이 플랫폼은 별도의 pH 조절이나 복잡한 장비 없이도 3분 이내에 색 변화를 통해 육안으로 결과를 판별할 수 있으며, 이 성과는 플랫폼 자체의 변경 없이, 촉매 구조 제어만으로도 진단 성능을 획기적으로 개선할 수 있음을 보여준 사례다.
이진우 교수는 “이번 연구는 단일원자 촉매의 반응 선택성을 원자 구조 설계를 통해 제어함으로써, 효소 수준의 선택성과 반응성을 동시에 구현한 사례로 의의가 있다”고 밝혔다. 또한 “이러한 구조–기능 관계 기반의 촉매 설계 전략은 향후 다양한 금속 기반 촉매 개발에도 적용할 수 있으며, 선택성 제어가 중요한 다양한 반응 영역으로 확장될 수 있다”고 강조했다.
우리 대학 생명화학공학과 박사과정 박선혜 학생과 최대은 학생이 공동 제1 저자로 연구 결과는 재료과학 분야의 권위 있는 국제 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에 2025년 7월 6일 게재됐다.
※ 논문명: Breaking the Selectivity Barrier of Single-Atom Nanozymes Through Out-of-Plane Ligand Coordination
(저자 정보 : 박선혜(KAIST, 제1 저자), 최대은(KAIST, 제1 저자), 심규인(서울대, 제1 저자), Phuong Thy Nguyen(가천대, 제1 저자), 김성빈(KAIST), 이승엽(KAIST), 김문일(가천대, 교신저자), 한정우(서울대, 교신저자), 이진우(KAIST, 교신저자) 총 9명)
※DOI: https://doi.org/10.1002/adma.202506480
한편, 이번 연구는 과학기술정보통신부와 한국연구재단의 지원을 받아 수행됐다.
2025.07.29
조회수 851
-
대기 오염 저감 위한 신개념 원자 촉매 설계
백금 셀레나이드는 백금(Pt)과 셀레늄(Se)이 층상 구조로 결합된 이차원 물질로, 우수한 결정성과 층간 상호작용의 정밀한 제어를 통해 다양한 물리적·화학적 특성의 조절이 가능한 것으로 알려져 있다. 이러한 특성으로 인해, 반도체, 광검출기, 전기화학 소자 등 다양한 분야에서 활발히 연구되어 왔다. 이번 연구진은 백금 셀레나이드 표면에 존재하는 원자 수준의 백금이 기체 반응에 대해 촉매로 기능할 수 있다는 새로운 설계 개념을 제시했으며, 이를 통해 고효율 이산화탄소 전환 및 일산화탄소 저감 등을 위한 차세대 기체상 촉매 기술로서의 가능성을 입증했다.
우리 대학 화학과 박정영 석좌교수 연구팀이 충남대학교 김현유 교수, 미국 센트럴플로리다대학교(UCF) 정연웅 교수 연구팀과 공동연구를 통해, 이차원 전이금속 칼코겐화합물인 백금 셀레나이드(PtSe₂) 표면에 노출된 백금 원자를 활용하여 우수한 일산화탄소 산화 성능을 구현하는 데 성공했다고 22일 밝혔다.
연구진은 촉매 성능을 극대화하기 위해 기존의 백금 덩어리 촉매 형태에서 백금 원자가 고밀도로 표면에 분산되도록 하여, 더 적은 양의 백금으로 더 많은 촉매반응을 유도하였으며, 표면의 전자 구조를 제어하여 백금과 셀레늄 사이의 전자 상호작용을 활발하게 일어나도록 유도하였다. 이 과정을 통해 제작된 수 나노미터 두께의 백금 셀레나이드 박막은, 동일 조건에서 일반 백금 박막보다 전 온도 범위에서 더 우수한 일산화탄소 산화 성능을 나타냈다.
특히, 표면에서는 일산화탄소와 산소가 골고루 비슷한 비율로 흡착되어 서로 반응할 기회가 높아졌고, 이로 인해 촉매 반응이 크게 향상됐다. 이러한 성능 향상의 핵심은 ‘셀레늄 결손(Se-vacancy)’으로 인해 노출이 확대된 표면 백금 원자들이 드러나면서 기체들이 붙을 수 있는 흡착점도 늘어났다는 데 있다.
연구진은 해당 백금 원자들이 실제 반응 과정에서 흡착점으로 작용했다는 사실을 포항가속기연구소에서 수행된 상압 엑스선 광전자분광(AP-XPS) 분석을 통해 실시간으로 확인했다. 이러한 고정밀 분석은 1나노미터 수준의 표면을 상압 환경에서 관찰할 수 있는 고도 장비 덕분에 가능했다. 동시에 컴퓨터 시뮬레이션 (밀도범함수이론*) 계산을 통해, 백금 셀레나이드가 일반 백금과는 다른 전자 흐름의 특성을 가지고 있음을 이론적으로도 입증했다.
*밀도범함수이론(Density Functional Theory, DFT): 전자 밀도(electron density)를 기반으로 시스템의 전체 에너지를 계산하는 방법
박정영 교수는 “이번 연구는 기존 백금 촉매와 다른 이차원 층상 구조의 백금 셀레나이드를 활용해, 기체 반응에 특화된 촉매 기능을 이끌어낸 새로운 설계 전략을 제시한 것”이라며, “백금과 셀레늄 사이의 전자적 상호작용이 일산화탄소와 산소를 균형있게 흡착하는 반응 조건을 만들었고 기존 백금보다 전체 온도내에서 반응성이 높도록 설계하여 실제 적용성이 향상되게 하였다. 이로써 원자 단위 설계, 2차원 물질 플랫폼, 흡착 조절 기술 등을 통해 고효율 촉매 반응 메커니즘을 구현할 수 있었다”고 밝혔다.
이번 연구는 우리 대학 화학과 한규호 박사, 충남대 신소재공학과 최혁 박사, 인하대 김종훈 교수가 공동 제1 저자로 참여했으며, 세계적 권위의 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 지난 7월 3일 자로 게재됐다.
※ 논문 제목: Enhanced catalytic activity on atomically dispersed PtSe2 two-dimensional layers
※DOI: 10.1038/s41467-025-61320-0
한편, 이번 연구는 과학기술정보통신부의 중견연구자지원사업과 교육부의 중점연구소사업, 국가전략기술소재개발사업, 미국 국립과학재단(NSF) CAREER 프로그램, 인하대학교 연구비, UCF 박사후연구자 프로그램(P3)의 지원을 받아 수행됐으며, 포항가속기연구소 및 한국기초과학지원연구원(KBSI)의 협조로 가속기 기반 분석이 진행됐다.
2025.07.22
조회수 980
-
AI로 방사성 오염 '아이오딘' 제거용 최적 신소재 발굴
원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다.
우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다.
최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적 흡착력을 가져 비효율적이었다. 따라서 아이오딘산염을 효과적으로 제거할 수 있는 새로운 흡착제 신소재 개발이 시급한 실정이다.
류호진 교수 연구팀은 기계학습을 활용한 실험 전략을 통해 다양한 금속원소를 함유한 ‘이중층 수산화물(Layered Double Hydroxide, 이하 LDH)’이라는 화합물 중 최적의 아이오딘산염 흡착제를 발굴했다.
이번 연구에서 개발된 구리-크롬-철-알루미늄 기반의 다중금속 이중층 수산화물 Cu3(CrFeAl)은 아이오딘산염에 대해 90% 이상의 뛰어난 흡착 성능을 보였다. 이는 기존의 시행착오 실험 방식으로는 탐색이 어려운 방대한 물질 조성 공간을 인공지능 기반의 능동학습법을 통해 효율적으로 탐색해 얻어낸 성과다.
연구팀은 이중층 수산화물(이하 LDH)이 고엔트로피 재료와 같이 다양한 금속 조성을 가질 수 있고 음이온 흡착에 유리한 구조를 지녔다는 점에 주목했다. 그러나 다중금속 LDH의 경우 가능한 금속 조합이 너무 많아 기존의 실험 방식으로는 최적의 조합을 찾기 어려웠다.
이를 해결하기 위해 연구팀은 인공지능(기계학습)을 도입했다. 초기 24개의 2원계 및 96개의 3원계 LDH 실험 데이터로 학습을 시작해, 4원계 및 5원계 후보 물질로 탐색을 확장했다. 이 결과 전체 후보 물질 중 단 16%에 대해서만 실험을 수행하고도 아이오딘산염 제거에 최적인 신소재 물질을 찾아낼 수 있었다.
류호진 교수는 “인공지능을 활용하면 방대한 신소재 후보 물질 군에서 방사성 오염 제거용 물질을 효율적으로 찾아낼 가능성을 보여, 원자력 환경 정화용 신소재 개발에 필요한 연구를 가속화하는데 기여할 것으로 기대된다”고 말했다.
류 교수 연구팀은 개발된 분말 기술에 대한 국내 특허를 출원했으며 이를 기반으로 해외 특허 출원을 진행 중이다. 연구팀은 향후 방사성 오염 흡착용 분말의 다양한 사용 환경에서의 성능을 고도화하고, 오염수 처리 필터 개발 분야에서 산학 협력을 통한 상용화 방안을 추진할 예정이다.
우리 대학 신소재공학과를 졸업한 이수정 박사와 한국화학연구원 디지털화학연구센터 노주환 박사가 제1 저자로 참여한 이번 연구는 이번 연구 결과는 환경 분야 국제 저명 학술지인 ‘위험물질 저널(Journal of Hazardous Materials)'에 5월 26일 온라인 게재됐다.
※논문명: Discovery of multi-metal-layered double hydroxides for decontamination of iodate by machine learning-assisted experiments
※DOI: https://doi.org/10.1016/j.jhazmat.2025.138735
이번 연구는 과학기술정보통신부 한국연구재단의 원자력기초연구지원사업과 나노·소재기술개발사업의 지원으로 수행됐다.
2025.07.02
조회수 1462
-
이산화탄소만 잡아내는 유망 소재를 AI로 쉽게 찾는다
기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다.
복잡한 구조와 분자 간 상호작용의 예측 한계로 인해 고성능 소재를 찾는 데 큰 제약을 극복하기 위해, 연구팀은 MOF와 이산화탄소(CO2), 물(H2O) 사이의 상호작용을 정밀하게 예측할 수 있는 기계학습(머신러닝) 기반 역장(Machine Learning Force Field, MLFF)을 개발하고, 이를 통해 양자역학 수준의 예측 정확도를 유지하면서도 기존보다 월등히 빠른 속도로 MOF 소재들의 흡착 물성을 계산할 수 있도록 했다.
연구팀은 개발된 시스템을 활용해 8,000여 개의 실험적으로 합성된 MOF 구조를 대규모 스크리닝한 결과, 100개 이상의 유망한 탄소 포집 후보 소재를 발굴했다. 특히 기존의 고전 역장 기반 시뮬레이션으로는 확인되지 않았던 새로운 후보 소재들을 제시했으며, MOF의 화학 구조와 흡착 성능 간의 상관관계를 분석해 DAC용 소재 설계에 유용한 7가지 핵심 화학적 특징도 함께 제안했다.
이번 연구는 MOF–CO2 및 MOF-H2O 간 상호작용을 정밀하게 예측함으로써, DAC 분야의 소재 설계 및 시뮬레이션 기술을 크게 향상한 사례로 평가된다.
우리 대학 생명화학공학과 임윤성 박사과정과 박현수 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `매터 (Matter)'에 지난 6월 12일 게재됐다.
※논문명: Accelerating CO2 direct air capture screening for metal-organic frameworks with a transferable machine learning force field
※DOI: 10.1016/j.matt.2025.102203
한편, 이번 연구는 Saudi Aramco-KAIST CO2 Management Center와 과학기술정보통신부의 글로벌 C.L.E.A.N. 사업의 지원을 받아 수행됐다.
2025.06.30
조회수 1348
-
배터리 없이 이산화탄소 실시간 모니터링 성공
기후 변화와 지구온난화를 막기 위해서는 이산화탄소(CO2)가 ‘얼마나’ 배출되고 있는지를 정확히 파악하는 것이 핵심이다. 이를 가능하게 하는 것이 바로 이산화탄소 모니터링 기술이다. 최근 한국 연구진이 외부 전력 없이도 이산화탄소 농도를 실시간 측정하고 무선으로 전송할 수 있는 시스템을 개발해 환경 모니터링 기술의 새로운 가능성을 열었다.
우리 대학 전기및전자공학부 권경하 교수 연구팀이 중앙대학교 류한준 교수팀과 공동연구를 통해, 주변의 미세 진동 에너지를 수확해 이산화탄소 농도를 주기적으로 측정할 수 있는 자가발전형 무선 모니터링 시스템을 개발했다고 9일 밝혔다.
지구온난화의 주요 원인인 이산화탄소 배출은 산업계의 지속가능성 평가 지표로 자리 잡고 있으며, 유럽연합(EU)은 이미 공장 배출량 규제를 도입한 상태다. 이러한 규제 흐름에 따라, 효율적이고 지속 가능한 이산화탄소 모니터링 시스템은 환경 관리와 산업 공정 제어에 필수적인 요소로 주목받고 있다.
그러나 기존 이산화탄소 모니터링 시스템은 대부분 배터리나 유선 전원에 의존하기 때문에 설치와 유지보수에 제약이 따른다. 연구팀은 이 문제를 해결하기 위해, 외부 전력 없이 작동 가능한 자가발전 무선 이산화탄소 모니터링 시스템을 개발했다.
이번 시스템의 핵심은 산업 장비나 배관에서 발생하는 진동(20~4000㎛ 진폭, 0-300 Hz 주파수 범위)을 전기로 바꾸는 ‘관성 구동(Inertia-driven) 마찰전기 나노발전기(Triboelectric Nanogenerator, TENG)’이다. 이를 통해 배터리 없이도 이산화탄소 농도를 주기적으로 측정하고 무선으로 전송할 수 있다.
연구팀은 4단 적층 구조의 관성 구동 마찰전기 나노발전기(TENG)에 탄성 스프링을 결합해 미세 진동을 증폭시키고 공진 현상을 유도, 13Hz, 0.56g의 가속도 조건에서 0.5㎽의 전력을 안정적으로 생산하는 데 성공했다. 생산된 전력은 이산화탄소 센서와 저전력 블루투스 통신 시스템을 구동하는 데 사용됐다.
권경하 교수는 “효율적인 환경 모니터링을 위해서는 전원 제약 없이 지속적으로 작동 가능한 시스템이 필수”라며, “이번 연구에서는 관성 구동 마찰전기 나노발전기(TENG)로부터 생성된 에너지를 바탕으로 주기적으로 이산화탄소 농도를 측정하고 무선으로 전송할 수 있는 자가발전 시스템을 구현했다”고 설명했다.
이어 “이 기술은 향후 다양한 센서를 통합한 자가발전형 환경 모니터링 플랫폼의 기반 기술로 활용될 수 있을 것”이라고 덧붙였다.
이번 연구 결과는 우리 대학 석사과정 장규림 학생과 중앙대 석사과정 다니엘 마나예 티루네(Daniel Manaye Tiruneh) 학생이 공동 제 1저자로 국제 저명 학술지 `나노 에너지(Nano Energy) (IF 16.8)'에 6월 1일자로 게재됐다.
※논문명 : Highly compact inertia-driven triboelectric nanogenerator for self-powered wireless CO2 monitoring via fine-vibration harvesting,
※DOI: https://doi.org/10.1016/j.nanoen.2025.110872
이번 연구는 사우디 아람코-KAIST CO2 관리 센터의 지원을 받아 수행됐다.
2025.06.09
조회수 3001
-
고성능 촉매 개발, 반도체 핫전자 기술을 통해 해결하다
우리 대학 화학과 박정영 석좌교수, 신소재공학과 정연식 교수, 그리고 KIST 김동훈 박사 공동 연구팀이 반도체 기술을 활용하여 촉매 성능에 특정 변인이 미치는 영향을 정량적으로 분석할 수 있는 새로운 플랫폼을 성공적으로 구현했다. 이를 통해 대표적인 다경로 화학 반응인 메탄올 산화 반응에서 메틸 포르메이트 선택성을 크게 향상시켰으며, 이번 연구는 차세대 고성능 이종 촉매 개발을 앞당기는 데 기여할 것으로 기대된다고 1일 밝혔다.
다경로 화학 반응에서는 반응성과 선택성의 상충 관계로 인해 특정 생성물의 선택성을 높이는 것이 어려운 문제로 남아 있다. 특히, 메탄올 산화 반응에서는 이산화탄소와 더불어 고부가 가치 생성물인 메틸 포르메이트가 생성되므로, 메틸 포르메이트의 선택성을 극대화하는 것이 중요하다.
그러나 기존 불규칙적인 구조의 이종 촉매에서는 금속-산화물 계면 밀도를 비롯한 여러 변인이 동시에 촉매 성능에 영향을 미치기 때문에 특정 변수가 개별적으로 미치는 영향을 분석하는 것이 어렵다. 이에 KAIST-KIST 공동 연구팀은 균일하게 정렬된 금속산화물 나노 패턴을 구현할 수 있는 반도체 기술을 활용하여 이종 촉매 성능에 영향을 미칠 수 있는 다른 변인을 통제하고, 오로지 금속산화물의 물성만이 촉매 성능에 미치는 영향을 정량적으로 분석하였다. 구체적으로, 산소 공극 (Oxygen Vacancy)의 양을 조절하기 위해 다양한 환경에서 열처리한 세륨 산화물 (CeOx) 나노 패턴을 제작하고, 이를 백금(Pt) 박막 촉매 위에 전사하여 금속산화물의 산소 공극이 메틸 포르메이트 선택성에 미치는 영향을 분석했다.
연구 결과, 산소 공극이 가장 풍부하게 생성된 진공 환경에서 열처리한 CeOx-Pt 이종 촉매의 경우, 열처리를 하지 않은 CeO2-Pt 이종 촉매 대비 약 50% 향상된 메틸 포르메이트 선택성을 보였으며, 이는 반응 중 발생하는 핫 전자의 검출을 통해 실시간으로도 확인되었다. 또한, 연구팀은 양자역학 기반의 DFT 시뮬레이션을 통해 금속산화물 내부의 산소 공극이 이종 촉매의 성능에 미치는 영향을 이론적으로 규명하였다. 시뮬레이션 결과, 산소 공극은 금속/산화물 계면에 많은 양의 전자를 축적시키면서 반응 중간체 간 결합을 촉진하였고, 이로 인해 메틸 포르메이트 선택성이 향상됨을 확인하였다.
이에 대해 박정영 교수는 “이번에 개발한 반도체기반 플랫폼을 통해 핫전하와 촉매 선택성의 정량적 분석이 가능해짐에 따라 핫전하 기반의 광촉매 센서의 상용화 개발 및 핫전하 기반 광열촉매 시스템의 상용화 개발로 이어질 수 있다.”고 언급했다. 신소재공학과 정연식 교수는 “기존의 무작위 구조를 가진 촉매에서는 특정 변수의 영향을 정량적으로 분석하는 것이 어려웠으나, 반도체 기술을 활용한 이번 연구를 통해 보다 효율적인 이종 촉매 설계와 선택성 조절 전략을 제시할 수 있을 것으로 기대된다”고 밝혔다.
신소재공학과 이규락 박사, 화학과 송경재 박사, KIST 홍두선 박사가 공동 제 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 3월 25일 자로 온라인 게재됐다. (논문 제목: Unraveling Oxygen Vacancy-Driven Catalytic Selectivity and Hot Electron Generation on Heterointerfaces using Nanostructured Platform)
이번 연구는 산업통상자원부 에너지혁신인재양성사업, 과학기술정보통신부 중견연구자지원사업, 그리고 과학기술정보통신부 국가전략기술소재개발사업 등의 지원을 받아 수행됐다.
2025.04.01
조회수 4498
-
머리카락 1,000분의 1 나노섬유 혁신, 세계 최고 CO₂ 전해전지 개발
지구 온난화의 주범인 이산화탄소를 시장 가치가 높은 화학물질로 전환할 수만 있다면, 환경 문제를 해결함과 동시에 높은 경제적 가치를 창출할 수 있다. 국내 연구진이 이산화탄소(CO2)를 일산화탄소(CO)로 전환하는 고성능 ‘세라믹 전해전지’를 개발하여 탄소중립 실현을 위한 핵심 기술로 주목받고 있다.
우리 대학 기계공학과 이강택 교수 연구팀이 신소재 세라믹 나노 복합섬유를 개발해 현존 최고 성능의 이산화탄소 분해 성능을 갖는 세라믹 전해전지를 개발하는 데 성공했다고 1일 밝혔다.
세라믹 전해전지(SOEC)는 이산화탄소를 가치 있는 화학물질로 전환할 수 있는 유망한 에너지 변환 기술로 낮은 배출량과 높은 효율성이라는 추가적인 이점이 있다. 하지만 기존 세라믹 전해전지는 작동 온도가 800℃ 이상으로, 유지 비용이 크고 안정성이 낮아 상용화에 한계가 있었다.
이에 연구팀은 전기가 잘 통하는 ‘초이온전도체’ 소재를 기존 전극에 함께 섞어 만든 ‘복합 나노섬유 전극’을 개발해 전기화학 반응이 더 활발하게 일어나도록 설계하고, 이를 통해 세라믹 전해전지가 더 낮은 온도에서도 효율적으로 작동할 수 있는 기반을 마련했다.
나아가, 이러한 소재 복합을 통해 나노섬유의 두께를 약 45% 감소시키고, 전극을 머리카락보다 1,000배 가는 두께(100나노미터)로 제작하여 전기분해 반응이 일어나는 면적을 극대화하여, 세라믹 전해전지의 작동 온도를 낮추는 동시에 이산화탄소 분해 성능을 약 50% 향상시키는데 성공했다.
복합 나노섬유가 적용된 세라믹 전해전지는 기존에 보고된 소자 중 가장 높은 세계 최고 수준의 이산화탄소 분해 성능(700℃에서 1.25 A/cm2)을 기록했으며, 300시간의 장기 구동에도 안정적인 전압을 유지해 소재의 탁월함을 입증했다.
이강택 교수는 “이번 연구에서 제안된 나노섬유 전극의 제작 및 설계 기법은 이산화탄소 저감뿐만 아니라 그린수소 및 친환경 전력 생산과 같은 다양한 차세대 에너지 변환 소자의 개발에 있어 선도적인 기술이 될 것”이라고 말했다.
우리 대학 기계공학과 김민정 석사, 김형근 박사과정, 아크롬존 석사가 공동 제 1 저자로 참여하고, 한국지질지원연구원 정인철 박사, 기계공학과 오세은 박사과정, 윤가영 석사과정이 공동저자로 참여한 이번 연구는 촉매·재료 분야의 세계적 권위지인 ‘어플라이드 카탈리시스 B: 환경과 에너지, Applied Catalysis B: Environment and Energy (IF:20.3)’에 3월 3일 온라인 게재됐다. (논문명: Exceptional CO2 Reduction Performance in Symmetric Solid Oxide Electrolysis Cells Enabled via Nanofiber Heterointerface Engineering, https://doi.org/10.1016/j.apcatb.2025.125222)
한편, 이번 연구는 과학기술정보통신부 나노 및 소재 기술개발사업, 개인기초연구사업 지원으로 수행됐다.
2025.04.01
조회수 4712
-
수소 경제 핵심, 세계 최고 수준 암모니아 촉매 개발
신재생 에너지를 이용한 수소 생산은 친환경 에너지 및 화학물질 생산의 핵심적인 기술이다. 하지만 이렇게 생산된 수소는 저장과 운송이 어렵기 때문에 탄소 배출이 없고, 액화가 쉬운 암모니아(NH3) 형태로 수소를 저장하려는 연구가 세계적으로 널리 진행되고 있다. 우리 연구진은 매우 낮은 온도와 압력에서도 에너지 손실 없이 암모니아를 합성할 수 있는 고성능 촉매를 개발했다.
우리 대학 생명화학공학과 최민기 교수 연구팀이 에너지 소비와 이산화탄소 배출량을 크게 줄이면서도 암모니아 생산성을 획기적으로 높일 수 있는 혁신적인 촉매 시스템을 개발했다고 11일 밝혔다.
현재 암모니아는 철(Fe) 기반 촉매를 이용해 하버-보슈 공정이라는 100년이 넘은 기술로 생산되고 있다. 하지만, 이 방식은 500℃ 이상의 고온과 100기압 이상의 고압이 필요해 엄청난 에너지를 소비하고, 세계 이산화탄소 배출량에서 상당한 비율을 차지하는 주범으로 지목됐다. 더구나 이렇게 생산된 암모니아는 대규모 공장에서 제조되기 때문에 유통 비용도 만만치 않다.
이에 대한 대안으로, 최근 물을 전기로 분해하는 기술인 수전해를 통해 생산된 그린 수소를 이용해 저온·저압(300도, 10기압)에서 암모니아를 합성하는 친환경 공정에 관한 관심이 급증하고 있다. 그러나 이러한 공정을 구현하려면 낮은 온도와 압력에서도 높은 암모니아 생산성을 확보할 수 있는 촉매 개발이 필수적이며, 현재의 기술로는 이 조건에서 암모니아 생산성이 낮아 이를 극복하는 것이 핵심 과제로 남아 있다.
연구팀은 루테늄(Ru) 촉매와 강한 염기성을 갖는 산화바륨(BaO) 입자를 전도성이 뛰어난 탄소 표면에 도입해 마치 ‘화학 축전지(chemical capacitor)*’처럼 작동하는 신개념 촉매를 개발했다.
*축전지: 전기 에너지를 +전하와 –전하로 나누어 저장하는 장치
암모니아 합성 반응 도중 수소 분자(H2)는 루테늄 촉매 위에서 수소 원자(H)로 분해 되며, 이 수소 원자는 양성자(H+)와 전자(e-) 쌍으로 한번 더 분해되게 된다. 산성을 띠는 양성자는 강한 염기성을 띠는 산화바륨에 저장되고 남은 전자는 루테늄과 탄소에 분리 저장되는 것으로 밝혀졌다.
이처럼 특이한 화학 축전 현상을 통해 전자가 풍부해진 루테늄 촉매는 암모니아 합성 반응의 핵심인 질소(N2) 분자의 분해 과정을 촉진해 촉매 활성을 비약적으로 증진시키는 것으로 밝혀졌다.
특히 이번 연구에서는 탄소의 나노구조를 조절함으로써 루테늄의 전자 밀도를 극대화해 촉매 활성을 증진시킬 수 있음을 발견했다. 이 촉매는 300도, 10기압인 온건한 조건에서 기존 최고 수준의 촉매와 비교하여 7배 이상 높은 암모니아 합성 성능을 나타냈다.
최민기 교수는 “이번 연구는 전기화학이 아닌 일반적인 열화학적 촉매 반응 과정에서도 촉매 내부의 전자 이동을 조절하면 촉매 활성을 크게 향상할 수 있음을 보여준 점에서 학계의 큰 주목을 받고 있다”고 밝혔다.
이어 “동시에 이번 연구를 통해 고성능 촉매를 활용하면 저온·저압 조건에서도 효율적인 암모니아 합성이 가능함이 확인되었다. 이를 통해 기존의 대규모 공장 중심 생산 방식에서 벗어나 분산형 소규모 암모니아 생산이 가능해지며, 친환경 수소 경제 시스템에 적합한 더욱 유연한 암모니아 생산·활용이 가능해질 것으로 기대된다.”라고 설명했다.
생명화학공학과 최민기 교수가 교신저자, 백예준 박사과정 학생이 제 1 저자로 연구에 참여하였으며, 연구 결과는 촉매 화학 분야에서 권위적인 국제 학술지인 ‘네이처 카탈리시스(Nature Catalysis)’에 지난 2월 24일 게재됐다.
(논문명 : Electron and proton storage on separate Ru and BaO domains mediated by conductive low-work-function carbon to accelerate ammonia synthesis, https://doi.org/10.1038/s41929-025-01302-z)
한편, 이 연구는 한국에너지기술연구원과 한국연구재단의 지원을 받아 수행되었다.
2025.03.11
조회수 5992
-
수면 무호흡증 실시간 진단 센서 개발
이산화탄소는 주요 호흡 대사 산물로서, 날숨 내 이산화탄소 농도의 지속적인 모니터링은 호흡·순환기계 질병을 조기 발견 및 진단하는 데 중요한 지표가 될 뿐만 아니라, 개인 운동 상태 모니터링 등에 폭넓게 사용될 수 있다. 우리 연구진이 마스크 내부에 부착하여 이산화탄소 농도를 정확히 측정하는데 성공했다.
우리 대학 전기및전자공학부 유승협 교수 연구팀이 실시간으로 안정적인 호흡 모니터링이 가능한 저전력 고속 웨어러블 이산화탄소 센서를 개발했다고 10일 밝혔다.
기존 비침습적 이산화탄소 센서는 부피가 크고 소비전력이 높다는 한계가 있었다. 특히 형광 분자를 이용한 광화학적 이산화탄소 센서는 소형화 및 경량화가 가능하다는 장점에도 불구하고, 염료 분자의 광 열화 현상으로 인해 장시간 안정적 사용이 어려워 웨어러블 헬스케어 센서로 사용되는 데 제약이 있었다.
광화학적 이산화탄소 센서는 형광 분자에서 방출되는 형광의 세기가 이산화탄소 농도에 따라 감소하는 점을 이용하며, 형광 빛의 변화를 효과적으로 검출하는 것이 중요하다.
이를 위해 연구팀은 LED와 이를 감싸는 유기 포토다이오드로 이루어진 저전력 이산화탄소 센서를 개발했다. 높은 수광 효율을 바탕으로 형광 분자에 조사되는 여기 광량이 최소화된 센서는 수 mW 수준을 소비하는 기존 센서에 비해 수십 배 낮은 171μW의 소자 소비전력을 달성했다.
연구팀은 또한 이산화탄소 센서에 사용되는 형광 분자의 광 열화 경로를 규명해 광화학적 센서에서 사용 시간에 따라 오차가 증가하는 원인을 밝히고, 오차 발생을 억제하기 위한 광학적 설계 방법을 제시했다.
이를 기반으로, 연구팀은 기존 광화학적 센서의 고질적 문제였던 광 열화 현상에 따른 오차 발생을 효율적으로 감소시키고 동일 재료에 기반한 기존 기술은 20분 이내인데 반해 최대 9시간까지 안정적으로 연속 사용이 가능하며, 이산화탄소 감지 형광 필름 교체시 다회 활용도 가능한 센서를 개발했다.
개발된 센서는 가볍고(0.12 g), 얇으며(0.7 mm), 유연하다는 장점을 기반으로 마스크 내부에 부착되어 이산화탄소 농도를 정확히 측정했다. 또한, 실시간으로 들숨과 날숨을 구별해 호흡수까지 모니터링 가능한 빠른 속도와 높은 해상도를 보였다.
유승협 교수는 "개발한 센서는 저전력, 고안정성, 유연성 등 우수한 특성을 가져 웨어러블 디바이스에 폭넓게 적용될 수 있어 과탄산증, 만성 폐쇄성 폐질환, 수면 무호흡 등 다양한 질병의 조기 진단에 사용될 수 있다”면서 “특히, 분진 발생 현장이나 환절기 등 장시간 마스크 착용 환경에서의 재호흡에 따른 부작용 개선에도 사용될 것으로 기대된다ˮ 라고 밝혔다.
신소재공학과 김민재 학사과정과 전기및전자공학부 최동호 박사과정이 공동 제1 저자로 참여한 이번 연구는 Cell 자매지인 `디바이스(Device)' 온라인판에 지난달 22일 공개됐다. (논문명: Ultralow-power carbon dioxide sensor for real-time breath monitoring) DOI: https://doi.org/10.1016/j.device.2024.100681
한편 이번 연구는 산업통상자원부 소재부품기술개발사업, 한국연구재단 원천기술개발사업, KAIST 학부생 연구참여 프로젝트 (URP) 프로그램의 지원을 받아 수행됐다.
2025.02.10
조회수 4225
-
버려지는 이산화탄소를 되살릴 수 있다면
세계적으로 기후 변화와 탄소 배출 문제의 심각성이 대두되면서 이산화탄소(CO2)를 화학 연료와 화합물 등의 자원으로 전환해서 활용하는 기술이 절실한 상황이다. 우리 대학 화학과 박정영 교수 연구팀이 한국재료연구원 나노재료연구본부 박다희 박사 연구팀과 공동연구를 통해 이산화탄소(CO2) 전환 효율을 크게 향상하는 촉매 기술을 개발했다.
기존의 이산화탄소(CO2) 전환 기술은 높은 에너지를 소비하는 것에 비해 효율은 낮아 상용화가 어렵다. 특히, 단원자 촉매(SACs)는 촉매 합성이 복잡하고, 금속 산화물 지지체(촉매 입자를 안정적으로 유지하거나 내구성을 높이는 역할)와 결합 안정성을 유지하기 어려워 촉매 성능이 떨어졌다.
이러한 한계를 극복하기 위해 연구팀은 단일 및 이중 단원자 촉매 기술을 개발하고 간단한 공정으로 촉매 효율을 높이는 기술을 선보였다. 본 성과는 이중 단원자 촉매(DSACs)로 금속 간 전자 상호작용을 적극 활용해 기존보다 50% 이상 높은 전환율과 우수한 선택성(촉매가 원하는 생성물을 많이 생성할 수 있도록 유도하는 능력)을 구현했다.
본 기술은 금속 산화물 지지체 내 산소 공공(Oxygen Vacancy)과 결함 구조를 정밀하게 제어해 이산화탄소(CO2) 전환 반응의 효율과 선택성을 획기적으로 높이는 촉매 설계 기술이다. 산소 공공이 촉매 표면에 이산화탄소가 잘 흡착되도록 돕고, 단원자 및 이중 단원자는 수소(H2)가 흡착되도록 돕는다. 산소 공공과 단원자 및 이중 단원자가 함께 작용하면서 이산화탄소(CO2)가 수소(H2)와 만나 원하는 화합물로 쉽게 전환되는 것이다. 특히, 이중 단원자 촉매(DSACs)는 두 금속 원자 간의 전자 상호작용을 적극 활용해 반응 경로를 조절하고 효율을 극대화했다.
연구팀은 에어로졸 분무 열분해법(Aerosol-Assisted Spray Pyrolysis)을 적용해 간단한 공정으로 촉매를 합성하고 대량 생산 가능성도 확보했다. 이는 복잡한 중간 과정 없이 액체 상태의 재료를 에어로졸(안개 같은 작은 입자)로 만든 후 뜨거운 챔버에 보내면 촉매가 완성되는 간단한 공정 방식이다. 해당 방식은 금속 산화물 지지체 내부에 금속 원자를 균일하게 분산시키고, 결함 구조를 정밀하게 조절할 수 있도록 돕는다. 이처럼 금속 산화물 지지체의 결함 구조를 정밀하게 제어함으로써 단일 및 이중 단원자 촉매를 안정적으로 형성하고 이중 단원자 촉매(DSACs)를 활용해 기존 단일 원자 촉매 사용량을 약 50% 줄이면서도 이산화탄소(CO2) 전환 효율을 기존 대비 약 두 배 이상 향상시키고, 99% 이상의 높은 선택성을 구현했다.
본 기술은 화학 연료 합성, 수소 생산, 청정에너지 산업 등 다양한 분야에 활용할 수 있다. 또한, 촉매 합성법(에어로졸 분무 열분해법)이 간단하고 생산 효율도 높아서 상용화될 가능성이 매우 크다.
연구책임자인 박다희 선임연구원은 "본 기술은 이산화탄소(CO2) 전환 촉매의 성능을 획기적으로 향상하는 동시에 간단한 공정을 통해 상용화를 가능하게 한 중요한 성과”라며, "탄소중립 실현을 위한 핵심 기술로 활용될 수 있을 것으로 기대된다.”라고 밝혔다. 또한 박정영 교수는 “본 연구는 새로운 종류의 단원자 촉매를 상대적으로 쉽게 합성할 수 있어 다양한 화학 반응에 쓰일 수 있고, 온실가스로 인한 지구온난화 문제 해결에 가장 시급한 연구 분야인 이산화탄소 분해/활용 촉매개발에 중요한 단초를 제공한다.”라고 언급했다.
본 연구는 한국재료연구원의 주요사업과 과학기술정보통신부, 산업통상자원부, 국가과학기술연구회의 지원을 받아 수행되었다. 연구 결과는 촉매 및 에너지 분야에서 권위 있는 저널인 어플라이드 카탈러시스 비: 인바이런멘탈 앤 에너지(Applied Catalysis B: Environmental and Energy(JCR 상위 1%, IF 20.3))에 온라인 게재됐다.
*논문(Applied Catalysis B: Environmental and Energy)
DOI 주소 https://doi.org/10.1016/j.apcatb.2024.124987
2025.01.23
조회수 4744
-
AI가 그린수소와 배터리 미래 신소재 찾아낸다
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다.
우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다.
스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개 이상의 후보군을 일일이 실험으로 성능을 확인하기 위해서는 많은 시간과 노력이 소요된다.
연구팀은 이를 해결하기 위해 AI와 계산화학을 동시에 사용해 1,240개의 스피넬 산화물 후보 물질을 체계적으로 선별하고, 그중 기존 촉매보다 뛰어난 성능을 보일 촉매 물질들을 찾는 데 성공했다.
그뿐만 아니라, 연구팀은 이번 연구를 통해서 전공 서적에서 손쉽게 찾아볼 수 있는 원자들의 전기음성도를 바탕으로 스피넬 촉매의 안정성과 성능을 예측할 수 있는 지표를 개발했다.
이로써 기존의 실험 방식에 비해 촉매 설계 과정을 훨씬 더 빠르고 효율적으로 진행할 수 있게 되었다. 또한, 연구팀은 스피넬 산화물에서 산소 이온이 움직일 수 있는 3차원 확산 경로를 발견해, 촉매의 성능을 더욱 향상할 수 있는 메커니즘을 처음으로 규명했다.
이강택 교수는 “이번 연구는 인공지능을 통해 신소재의 성능을 빠르고 정확하게 예측할 수 있는 새로운 방법을 제시했다”며, “특히, 이를 통해 그린수소와 배터리 분야에 활용될 수 있는 촉매 및 전극의 개발을 가속화해, 고성능의 친환경 에너지 기술의 발전에 기여할 것”이라고 전했다.
연구팀이 제시한 예측 방법은 기존 실험 방식에 비해 신소재 개발의 효율성을 70배 이상 크게 높였으며, 이러한 성과가 차세대 에너지 변환 및 저장 장치를 위한 소재 개발 연구에 핵심 기술로 자리 잡을 가능성을 높게 보고 있다.
한국에너지기술연구원 이찬우 박사가 공동 교신 저자로 참여하였으며, 한국지질자원연구원 정인철 박사, KAIST 신소재공학과 심윤수 박사가 공동 제1 저자로 참여하고, KAIST 신소재공학과 육종민 교수, 한국지질자원연구원 노기민 박사가 공동 저자로 참여한 이번 연구 결과는 세계적인 학술지‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:24.4)’에 중요한 연구 결과임을 인정받아 표지(Inside Front cover) 에 선정됐으며, 24년 10월 21일에 게재됐다. (논문명: A Machine Learning-Enhanced Framework for the Accelerated Development of Spinel Oxide Electrocatalysts)
한편, 이번 연구는 과학기술정보통신부의 개인기초 연구사업, 집단기초연구사업, 그리고 국가과학기술연구회 창의형 융합연구사업의 지원을 받아 수행됐다.
2024.11.21
조회수 6805