-
숨겨진 다자 간 관계를 추적·복원하는 AI '마리오' 개발
회의실에 여러 사람이 동시에 모여 회의하는 경우처럼, 다수의 객체가 동시에 상호작용하는 고차원 상호작용(higher-order interaction)은 다양한 분야에서 발생하며, 실세계의 복잡한 관계를 담고 있다. 하지만 기술적 제약으로 인해 많은 분야에서는 주로 개별 쌍 간의 저차원 정보만 수집돼, 전체 맥락이 손실되고 활용에 제약이 따랐다. KAIST 연구진이 이처럼 불완전한 정보만으로도 고차원 상호작용을 정밀하게 복원*하는 AI ‘마리오(MARIOH)’를 개발하며, 소셜 네트워크, 뇌과학, 생명과학 등 다양한 분야에서 혁신적 분석 가능성을 열었다.
*복원: 사라지거나 관측되지 않은 원래 구조를 추정/재구성하는 것
우리 대학 김재철AI대학원의 신기정 교수 연구팀이 저차원 상호작용 정보만으로 고차원 상호작용 구조를 높은 정확도로 복원할 수 있는 인공지능 기술인 ‘마리오(이하 MARIOH, Multiplicity-Aware Hypergraph Reconstruction)’를 개발했다고 5일 밝혔다.
고차원 상호작용 복원이 어려운 이유는 동일한 저차원 상호작용 구조로부터 파생될 수 있는 고차원 상호작용의 가능성이 무수히 많기 때문이다.
연구팀이 개발한 MARIOH의 핵심 아이디어는 저차원 상호작용의 다중도(multiplicity) 정보를 활용해, 해당 구조로부터 파생될 수 있는 고차원 상호작용의 후보 수를 획기적으로 줄이는 데 있다.
더불어, 효율적인 탐색 기법을 통해 유망한 상호작용 후보를 신속하게 식별하고, 다중도 기반의 심층 학습 기술을 활용해 각 후보가 실제 고차원 상호작용일 가능성을 정확하게 예측한다.
연구팀은 10개의 다양한 실세계 데이터 셋을 대상으로 한 실험 결과, MARIOH는 기존 기술 대비 최대 74% 높은 정확도로 고차원 상호작용을 복원하는 데 성공했다.
예를 들어, 논문 공저 관계 데이터(출처: DBLP)에서는 98% 이상의 복원 정확도를 달성해, 약 86% 수준에 머무는 기존 기술을 크게 앞질렀다. 또한, 복원된 고차원 구조를 활용할 경우, 예측, 분류 등 다양한 작업에서의 성능이 향상되는 것으로 나타났다.
신기정 교수는 “MARIOH는 단순화된 연결 정보 정보에만 의존하던 기존 접근에서 벗어나, 실제 세계의 복잡한 연결 관계를 정밀하게 활용할 가능성을 열어 준다”라며, “단체 대화나 협업 네트워크를 다루는 소셜 네트워크 분석, 단백질 복합체나 유전자 간 상호작용을 분석하는 생명과학, 다중 뇌 영역 간 동시 활동을 추적하는 뇌과학 등 다양한 분야에서 폭넓게 활용될 수 있을 것”이라고 밝혔다.
김재철AI대학원의 이규한 석박통합과정(現 GraphAI 소프트웨어 엔지니어)과 이건 석박사통합과정, 신기정 교수가 저자로 참여한 이번 연구는 지난 5월에 홍콩에서 열린 제41회 IEEE 국제 데이터공학 학회(IEEE International Conference on Data Engineering, IEEE ICDE)에서 발표됐다.
※논문명: MARIOH: Multiplicity-Aware Hypergraph Reconstruction
※DOI: https://doi.ieeecomputersociety.org/10.1109/ICDE65448.2025.00233
한편, 이번 연구는 정보통신기획평가원의 지원을 받은 ‘EntireDB2AI: 전체 관계형 데이터베이스를 종합적으로 활용하는 심층 표현 학습 및 예측 원천기술과 소프트웨어 개발’ 과제와 한국연구재단의 지원을 받은 ‘그래프 파운데이션 모델: 다양한 모달리티 및 도메인에 적용 가능한 그래프 기반 기계 학습’과제의 성과다.
2025.08.05
조회수 526
-
초대규모 그래프 프로세싱 시뮬레이션 기술 개발
우리 대학 연구진이 오늘날 정보통신(IT) 분야에서 광범위하게 사용되는 그래프 타입의 데이터를 실제로 저장하지 않고도 알고리즘을 계산할 수 있는 `그래프 프로세싱 시뮬레이션'이라는 신개념 기술을 세계 최초로 개발하는 데 성공했다. 데이터를 저장할 필요가 없어 1조 개 간선의 초대규모 그래프도 PC 한 대로 처리가 가능하다.
우리 대학 전산학부 김민수 교수 연구팀은 1조 개 간선의 초대규모 그래프에 대해 데이터 저장 없이 알고리즘을 계산할 수 있는 신개념 기술을 세계 최초로 개발했다고 23일 밝혔다.
오늘날 웹, SNS, 인공지능, 블록체인 등의 광범위한 분야들에서 그래프 타입의 데이터에 대한 다양한 알고리즘들의 연구가 매우 중요하다. 그러나 그래프 데이터의 복잡성으로 인해 그 크기가 커질 때 막대한 규모의 컴퓨터 클러스터가 있어야만 알고리즘 계산이 가능하다는 문제가 있다.
김 교수 연구팀은 이를 근본적으로 해결하는 T-GPS(Trillion-scale Graph Processing Simulation)라는 기술을 개발했다. 이 T-GPS 기술은 그래프 데이터를 실제로 디스크에 저장하지 않고도 마치 그래프 데이터가 저장돼 있는 것처럼 알고리즘을 계산할 수 있고, 계산 결과도 실제 저장된 그래프에 대한 알고리즘 계산과 완전히 동일하다는 장점이 있다.
그래프 알고리즘은 그래프 처리 엔진 상에서 개발되고 실행된다. 이는 산업적으로 널리 사용되는 SQL 질의를 데이터베이스 관리 시스템(DBMS) 엔진 상에서 개발하고 실행하는 것과 유사한 방식이다.
지금까지는 그래프 알고리즘을 개발하기 위해 먼저 합성 그래프를 생성 및 저장한 후, 이를 다시 그래프 처리 엔진에서 메모리로 적재해 알고리즘을 계산하는 2단계 방법을 사용했다. 그래프 데이터는 그 복잡성으로 인해 전체를 메모리로 적재하는 것이 요구되며, 그래프의 규모가 커지면 대규모 컴퓨터 클러스터 장비가 있어야만 알고리즘을 개발하고 실행할 수 있다는 커다란 단점이 있었다.
김 교수팀은 합성 그래프와 그래프 처리 엔진 분야에서 국제 최고 권위의 학술대회에 매년 논문을 발표하는 등 세계 최고의 기술력을 보유하고 있으며, 그 기술들을 바탕으로 기존 2단계 방법의 문제를 해결했다.
그래프 데이터상에서 그래프 알고리즘이 계산을 위해 접근하는 부분을 짧은 순간 동안 실시간으로 생성해, 마치 그래프 데이터가 존재하는 것처럼 알고리즘을 계산하는 것이다. 이때 그래프 데이터를 아무렇게 실시간 생성하는 것이 아니라 합성 그래프 모델에 따라 생성하고 저장한 것과 동일하도록 실시간 생성하는 것이 핵심 기술 중 하나다.
또한, 그래프 처리 엔진이 실시간으로 생성되는 그래프를 실제 그래프처럼 인식하고 알고리즘을 완전히 동일하게 계산하도록 엔진을 수정한 것이 또 다른 핵심 기술이다.
김민수 교수 연구팀은 T-GPS 기술을 종래의 2단계 방법과 성능을 비교한 결과, 종래의 2단계 방법이 11대의 컴퓨터로 구성된 클러스터에서 10억 개 간선 규모의 그래프를 계산할 수 있었던 반면, T-GPS 기술은 1대의 컴퓨터에서 1조 개 간선 규모의 그래프를 계산할 수 있어 컴퓨터 자원 대비 10,000배 더 큰 규모의 데이터를 처리를 할 수 있음을 확인했다. 또한, 알고리즘 계산 시간도 최대 43배 더 빠름을 확인했다.
교신저자로 참여한 김민수 교수는 "오늘날 거의 모든 IT 분야에서 그래프 데이터를 활용하고 있는바, 연구팀이 개발한 새로운 기술은 그래프 알고리즘의 개발 규모와 효율을 획기적으로 높일 수 있어 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다.
이번 연구에는 김 교수의 제자이자 캐나다 워털루 대학에 박사후 연구원으로 재직 중인 박힘찬 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 22일 그리스 차니아에서 온라인으로 열린 데이터베이스 분야 최고 국제학술대회 중 하나인 IEEE ICDE에서 발표됐다. (논문명 : Trillion-scale Graph Processing Simulation based on Top-Down Graph Upscaling).
한편, 이 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2021.04.23
조회수 27454