본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%83%9D%EB%AA%85%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
IECA2006 국제학술대회 한국 개최
시스템 생물학 분야 세계적 전문가들 한국 총 집결 오는 10월 31일 부터 4일간, 제주 국제컨벤션센터에서 세계적 석학 47명 강연, 관련학자 16개국 2백여명 참여 한국의 시스템 생물학분야 연구역량 국제적 인정 KAIST(총장 서남표)가 주최하고 KAIST 시스템생물학연구팀, 아시아과학인재포럼, BK21 화학공학사업단, 미생물프론티어사업단에서 주관하는 제3회 IECA2006((International E. Coli Alliance, 국제대장균연대모임 시스템 생물학 국제 학술대회 /대회 의장 이상엽 KAIST 생명화학공학과 교수)가 오는 10월 31일부터 11월 3일까지 4일동안 제주 국제컨벤션센터에서 개최된다. 이번 대회에는 대장균의 시스템 생물학 및 가상세포 시스템, 분자생물학, 생물정보학 등 다양한 학문분야의 세계적 석학 47명(국외 38명, 국내 9명)이 강연할 예정이며, 16개국의 저명 석학 2백여명이 참여할 예정이다. 참여예정인 주요 외국연사로는 재조합 대장균에의한 바이오에탄올의 창시자인 플로리다주립대학의 인그램(L. Ingram) 교수, 컴퓨터 대사시뮬레이션의 대가인 캘리포니아 샌디에고 대학의 팔슨(B. Palsson) 교수, 대장균 게놈을 밝힌 위스콘신대학의 블레트너(F. Blattner) 교수, 일본 E-Cell팀의 총책임자인 도미타(M. Tomita) 교수, 빌 게이츠로부터 지원받아 항말라리아 약품 연구를 선도하고 있는 캘리포니아 버클리대학의 키슬링(J. Keasling) 교수, 시스템 생물학의 창시자인 SONY의 기타노(H. Kitano) 박사, Silicon Cell을 개발한 네덜란드의 웨스터오프(H. Westerhoff) 교수, 미국 NCBI에서 게놈연구를 선도하는 갈페린(M. Galperin) 박사, EcoCyc, MetaCyc 등 세계 최고의 대사 데이터베이스를 개발한 카프(P. Karp) 박사, 대장균의 진화와 유전학 전문가인 미국의 렌스키(R. Lenski) 교수, 대장균 4천3백개의 개개의 유전자가 결손된 돌연변이 대장균을 만들어 연구하는 일본의 모리(H. Mori) 교수, 독일 시스템 생물학을 책임지는 스튜트가르트대학의 리우스(M. Reuss) 교수, 일본 생물정보학회장 미야노(S. Miyano) 교수, 호주 생물정보학연구센터장 레이건(M. Ragan) 교수, 전세계 대장균 네트워크를 주도하는 미국 퍼듀대학의 워너(B. Wanner) 교수, 재조합 단백질의 생산과 관련 기술의 세계적 권위자인 텍사스주립대학 조지우(G. Georgiou) 교수, 유럽 생명공학의 리더인 퓰러(A. Puehler) 교수, 호주 AIBN 대사공학 전문가인 닐슨(L. Nielsen) 교수 등 세계 최고의 석학들이 모두 한자리에 모인다. 그 외에도 실제 생명공학 산업화에 관련하여 연구를 주도하고 있는 세계적 화학기업인 미국 듀퐁사, 가상세포 상용화를 주도하는 미국 제노마티카사, 대사공학 기업인 프랑스의 메타볼릭익스플로러사 등에서의 산업화 사례도 발표된다. 국내 주요연사로는 게놈엔지니어링의 대가인 KAIST 생명과학과 김선창 교수, 동적모사 분야 서강대 이진원 교수, 미생물생리 분야 한국생명공학연구원 반재구 박사, 신규 대장균의 게놈 분야 김지현 박사, 대장균 전사조절 분야 권오석 박사, 효모의 시스템생물학 분야 강현아 박사 등이다. 이번 학술대회 의장인 이상엽 교수는 이번 학술대회에서 과학기술부 시스템생물학 연구개발 사업의 주요결과를 공개한다. 이번 학술대회는 미생물 연구의 정점에 서있는 대장균 연구에 관한 모든 분야를 대상으로 한다. 대장균에서 일어나는 세포의 생리학적 현상들에 대한 규명 및 발견은 물론, 인실리코(in silico) 네트워크 모델을 통한 산업적?경제적 균주 개발이나 omics 기술 개발 및 응용 등의 시스템 생물학 측면을 다루게 된다. 이렇게 광범위한 부분을 다룸으로써 기초 연구와 산업적 응용 사이를 연결하는 다리 역할을 하는 것이 이번 학회의 주목적이다. 또한 대장균 연구에 대한 국제적 연구동향 및 주요 내용을 공유하고, 공통 기반의 연구 하드웨어 및 소프트웨어를 구축하며, 다른 생명공학 연구로의 응용에 발판이 될 수 있는 거대한 대장균 데이터베이스를 만드는 것을 목적으로 하고 있다. 기존의 IECA학회와는 달리 이번 IECA2006에서는 학계와 연구계의 순수 및 응용연구 발표 뿐만 아니라 산업체에서 시스템생명공학의 활용에 관한 실례들과 산업화에 적용되는 시스템생물학 사례들도 발표된다. 여종기 전 LG화학 CTO, 윤재승 대웅제약 부회장, 정광섭 GS칼텍스 연구소장, 박진환 네오위즈 사장, 이진 메디제네스 사장, 유진녕 LG화학기술연구원장, 서정선 마크로젠 회장, 이병훈 유니베라 사장 등 산업계 자문단은 앞으로 시스템생물학이 의약에서 화학제품에 이르는 모든 생명공학의 중심에 설 것임을 예상, 이번 국제학회를 적극적으로 지원하고 있다. 이번 학술대회 의장이며, 실질적인 대회 주관자인 KAIST 생명화학공학과 이상엽(李相燁, 42, LG화학 석좌교수, 생물정보연구센터 소장) 교수는 “최근 전 세계적으로 많은 관심을 가지고 연구하고 있는 시스템생물학과 관련하여 세계적인 석학들이 대거 참석할 예정이다. 이번 학술대회가 많은 관심 속에 한국에서 치러지게 된 것은 그만큼 한국의 시스템 생물학의 역량이 국제적으로 인정받고 있음을 의미한다. 이번 대회를 성공적으로 마무리하여, 해외 선진국의 시스템생물학 관련 최신기술 및 동향을 습득하고, 국제적인 석학들과 한국 과학자들 간의 유기적인 교류와 협력을 유도하여 한국 시스템생물학 및 생명공학 발전에 큰 기여를 했으면 한다.”라고 소감을 밝혔다. 이번 학회의 실무운영을 돕고 있는 KAIST 생명화학공학과 최종현 연구교수는 “이번 대장균 시스템 생물학 국제학술대회에 큰 관심들을 보여 원래 제한하고자 했던 등록자수 150명을 넘어 170여명이 등록한 상태다. 조직위원회에서는 세계적인 학술행사에 우리나라 학자들이 좀더 참석할 수 있도록 20-30여명의 추가 참석자를 받기로 결정했다. 우리나라가 시스템 생물학 관련 글로벌 네트워크의 중심에 설 수 있는 좋은 기회라고 생각한다.”라고 말했다. 최근 인체를 비롯한 다양한 생물에 대한 유전자 지도가 완성되고, 유전체, 전사체, 단백체등의 새로운 분석기술이 등장함에 따라, 이를 이용한 다양한 생물학적 지식을 총체적으로 찾고자 많은 학자들이 노력하고 있다. 이를 위해 생물학, 수학, 전산학, 화학공학이 융합되어 생명현상을 시스템수준에서 이해하고자하는 시스템생물학이 현재 생명공학의 중심에 자리잡고 있다. 시스템 생물학 혹은 시스템 생물공학적 기법을 이용하여 살아 있는 세포의 포괄적인 이해를 위해 이와 관련된 중요 연구그룹의 일부 과학자들은 연구에 있어서 효율을 최대화하면서 필수적인 정보의 공유를 위하여 전 세계 전문가들의 연대 필요성에 동의하기에 이르렀고 이러한 목표를 달성하기 위해 IECA가 조직되었다. IECA는 앞으로 대장균의 유전체, 전사체, 단백체 등의 연구 내용을 상호 교류 및 공유하고 이러한 데이터들을 바탕으로 거의 실제 대장균과 동일한 in silico 모델을 개발할 것을 목적으로 두고 있다. 대장균에 대해 완벽한 가상 모델을 구성하면, 이후 보다 복잡한 고등 생물 더 나아가 인체에 대한 가상 모델을 구성하는데 많은 기여를 할 것으로 생각되며, 이러한 가상 세포를 이용하여 지금보다 더 다양한 유용물질을 생산하는데 도움이 될 것이다. IECA는 제1회 대회를 지난 2003년 일본의 게이오대학에서, 제2회 대회를 2004년 캐나다 알버타 대학의 협조로 밴프센터에서 성공적으로 개최한 바 있으며, 국제학회를 통해 전 세계의 우수한 석학들과 정보를 공유하면서 생명 자체를 이해하려는 노력을 더욱 견고히 하고 있다. IECA의 중요성은 네이처 자매지인 몰리큘러 시스템스 바이올로지(Molecular Systems Biology) 저널 2005년 3월호에 소개되기도 했다. 이번 2006년 학술대회에서는 KAIST 이상엽 교수가 그간 과학기술부 지원 시스템생물학 연구개발 사업의 결실로 내놓은 미생물 시스템 생명공학과 관련된 높은 학문적 업적을 인정받아 의장으로 추대되었다.
2006.07.28
조회수 21231
김성철 교수, 학술원상 수상
생명화학공학과 김성철(金聖喆) 교수가 고분자 공학 학술 발전에 공헌한 공로를 인정받아 제51회 대한민국학술원상 수상자로 선정됐다. 대한민국학술원상은 매년 학술 연구 또는 저작이 우수해 학술발전에 크게 기여한 학자에게 주어지는 상이다. 수상자에게는 각각 3천만원의 상금과 메달이 수여된다. 대한민국학술원(회장 김태길)은 지난 14일 金 교수 등 6명의 학자를 수상자로 선정, 오는 9월 15일 대한민국학술원 대회의실에서 시상식을 갖는다.
2006.07.25
조회수 14888
이상엽 교수팀, 美 미생물 분자생물학 리뷰지 논문 게재
대장균 단백체 연구, 국내 연구진이 총정리 과학기술부 시스템생물학 연구개발 사업 결실 생명화학공학과 이상엽 LG화학 석좌교수(李相燁, 42세)와 그의 제자인 한미정(韓美正, 31세)박사(현재 미국 위스타 연구소 및 펜실베니아대학 소속 연구원)의 대장균 단백체 논문이 『대장균 단백체 : 과거, 현재, 미래전망(The Escherichia coli Proteome: Past, Present, and Future Prospects)』이라는 제목으로 한국에서는 처음으로 미국 미생물 분자생물학리뷰(MMBR, Microbiology and Molecular Biology Reviews)誌 6월호에 게재됐다고 밝혔다. MMBR은 미국미생물학회(American Society for Microbiology)에서 발행하는 70년 전통의 리뷰학술지로서 미생물학 및 미생물 유전학, 분자생물학 등에 관한 바이블과 같은 잡지다. 연간 4회 발행되며 한해 평균 30편 정도의 논문만이 게재된다. 미생물분야 학술지 중에서 영향지수(impact factor)가 17이상으로 가장 높다. 분야 최고의 전문가들의 리뷰논문들이 실리며, 게재되는 논문들의 영향력도 매우 큰 것으로 알려졌다. 이번 논문에서는 지난 1975년도부터 시작된 단백체 기술 발전사, 대장균 단백체에 이용되고 있는 방대한 기술, 현재 대장균 단백체의 연구현황 및 향후 연구방향 등을 총정리했다. 총 335개의 핵심 참고문헌 내용을 포함한 78페이지 분량의 논문으로서 앞으로 대장균 단백체연구의 핵심 참고자료로 활용될 것으로 기대되고 있다. 단백체 기술은 시대 순으로 세부분으로 나눠 자세히 언급했다: (1)이차원 전기영동 젤을 이용한 방법(gel based approaches), (2)비전기영동 젤을 이용한 방법(non-gel based approaches) 및 (3)컴퓨터를 이용한 방법(predictive proteomics). 이러한 방법들을 통해 현재까지 밝혀진 1,627 단백질(~38% of 대장균 게놈의 4,237 유전자)에 대한 단백질 정보가 제공되었으며, 대장균 단백체 실험을 위한 최적의 전략 및 방법을 아주 상세히 언급했다. 또한 대장균 단백체의 연구 현황에서는 학문적, 산업적 측면으로 나눠서 그 중요성을 부각시켰다. 학문적으로는 대장균 단백체의 외부 환경요소의 자극(온도, pH, 산소, 영양부족 등)에 따른 세포내의 반응 및 그 유전자의 조절 메카니즘에 대한 정보가 제공되었으며, 산업적으로는 대장균 단백체 정보를 바탕으로 하여 대사공학 및 맞춤형 유전자 조작을 통한 유용 단백질의 생산성 증대 및 개선에 응용한 성공사례를 자세히 언급했다. 마지막으로 단백체 기술의 한계점을 제시함과 동시에 향후 연구방향도 제시했다. 특히, 심사과정에서 이 논문을 접한 외국 전문가들은 이 논문을 표준(standard)으로 하여 인터넷상에서 대장균 단백체 정보를 총 정리한 웹사이트 운영을 요청해 왔으며, 현재 李 교수팀은 관련 웹사이트를 준비 중에 있다. 韓 박사는 “본 논문은 대장균 단백체의 바이블로서 방대한 자료를 체계적으로 깊이있게 잘 정리했기 때문에 단백체 연구를 처음 시작하는 분들께 많은 도움이 될 것으로 본다”며, “우리나라의 단백체 연구는 세계적 수준이라는 점을 강조하고 싶다.”고 밝혔다. 李 교수는 “우리나라는 미생물 단백체 분야에서 경쟁력이 있을 뿐 아니라, 동식물 대상 단백체 연구도 한국프로테옴기구 등의 왕성한 활동등에서 볼 수 있듯이 국제적으로도 아주 우수한 수준이다. 앞으로 단백체연구를 기반으로 우리나라 생명공학 분야의 학술적 산업적 성과들이 쏟아져 나올 것으로 믿는다.” 라고 말했다. ■ 용어 설명 1) 단백체(proteome): 생명체의 전체 유전자, 즉 유전체(genome)에 의해 발현되는 모든 단백질들의 총합을 말한다. 어떤 단백질이, 얼마의 양으로, 어떤 환경에서 발현되는 가를 파악하는 것을 목적으로 한다. 생명체의 genome이 모든 세포에서 동일한 형태로 존재하며, 생명체가 수행하는 기능의 이론적인 면만을 제시할 수 있음에 반해, 단백체는 세포가 처해 있는 환경에 따라, 그리고 고등 생명체의 경우에는 각 조직 별로 유동적으로 존재하며, 세포의 실제적인 기능을 표현해 준다. 이러한 이유로 급속도로 밝혀지고 있는 미지의 유전자들의 기능을 밝혀 내고자 하는 functional genomics의 한 부분으로 새롭게 부각되고 있고, 세포 내에서 일어나는 실제적인 현상들을 전체 단백질 단계에서 통합적으로 파악하는 수단을 제공한다. 2) 전기영동(electrophoresis): 전기장의 영향을 받아 하전된 물질이 유동성 매체내에서 이동하는 것을 말한다. 특히 단백질 분리용으로 사용되고 있는 이차원 전기영동법(two-dimensional gel electrophoresis)은 먼저 전하량에 따라 단백질을 분리한 후 아크릴 아마이드 젤상에서 단백질 크기에 따라 분리하는 법이다. 3) 게놈: 생물체를 구성하고 기능을 발휘하게 하는 모든 유전정보를 보유한 유전자의 집합체로서, 부모로부터 자손에 전해지는 유전물질의 단위체를 뜻하기도 한다. 이때 게놈에서 유전정보는 DNA라는 분자구조로 존재하며 4가지 화학적 암호인 A·G·T·C 등의 염기서열로 표기되어 있다. 4) 대사공학: 유전자 재조합 기술과 관련 분자생물학 및 화학공학적 기술을 이용하여 새로운 대사회로를 도입하거나 기존의 대사회로를 증폭/제거/변형시켜 세포나 균주의 대사특성을 우리가 원하는 방향으로 바꾸는(directed modification) 일련의 기술을 말한다. ■ 이상엽 교수 프로필 이상엽 교수는 1986년 서울대학교 화학공학과를 졸업하고, 1991년 미국 노스웨스턴대학교 화학공학과에서 석박사를 마쳤다. KAIST에서 약 12년 동안 대사공학에 관한 연구를 집중적으로 수행하여 그간 국내외 학술지논문 208편, proceedings논문 144편, 국내외 학술대회에서 748편의 논문을 발표하였고, 기조연설이나 초청 강연을 200여회 한 바 있으며, Metabolic Engineering(Marcel Dekker 사 발간) 등 다수의 저서가 있다. 그간 202건의 특허를 국내외에 등록 혹은 출원하였는데, 미국 엘머 게이든상과 특허청의 세종대왕상을 받는 등 기술의 우수성이 입증된 바 있다. 생분해성고분자, 광학적으로 순수한 정밀화학물질, DNA chip, Protein chip 등의 기술 개발에서 탁월한 연구 업적을 쌓았고, 최근에는 소위 omics와 정량적 시스템 분석기술을 통합하여 생명체 및 세포를 연구하는 시스템 생명공학분야 연구와 게놈정보 이용 생물공정기술 개발에 매진하고 있다. 李 교수는 그간 제 1회 젊은 과학자상(대통령, 1998), 미국화학회에서 엘머 게이든(Elmer Gaden)상(2000), 싸이테이션 클래식 어워드(미국 ISI, 2000), 대한민국 특허기술 대상(2001), 닮고 싶고 되고 싶은 과학기술인(2003), KAIST 연구대상(2004), 한국공학한림원 젊은 공학인상(2005) 등을 수상하였고, 2002년에는 세계경제포럼으로부터 아시아 차세대 리더로 선정되어 활동 중이다.
2006.06.12
조회수 23831
김성철교수, 일본고분자학회 국제상 수상
생명화학공학과 김성철(金聖喆, 61) 교수가 최근 일본 나고야에서 열린 제55회 일본 고분자학회 연차대회 총회에서 아이피엔(IPN) 학술연구 업적으로 “국제상”을 수상했다. 일본 고분자학회는 매년 고분자분야 연구실적이 우수한 외국인 과학자를 선정, "국제상"을 수여한다. 올해에는 金 김교수와 미국 워싱턴대학 Allan S. Hoffman교수, 미국 듀폰사의 Alan D. English 박사가 "국제상"을 수상했다. 金 교수는 상호침투성 고분자(IPN) 분야의 우수한 학술연구실적과 공적을 인정받아 이 상을 수상하게 되었다
2006.06.12
조회수 16018
웹 기반 가상세포 분석시스템 WebCell 개발 공개
-생물정보학 관련 전문 학술지인 바이오인포메틱스지 5월호에 게재 - 과학기술부 특정연구개발사업『시스템생물학연구사업』에 참여하고 있는 KAIST 이상엽, 박선원 교수팀은 생명체의 대사 및 신호전달 기능과 특성의 동적 분석을 위한 웹 기반 소프트웨어 ‘WebCell 시스템’을 개발하여 공개했다. 이 시스템은 현재까지 전 세계적으로 개발된 생체 및 세포 동적 모사 시스템 중 가장 다양한 기능을 제공하는 것으로 시스템 생물학 연구의 국제 공동체인 SBML에 등록되어 공개되며, 연구결과는 영국 옥스퍼드대학 출판사 발간 생물정보학 관련 전문 학술지인 바이오인포메틱스 (Bioinformatics)지 5월호에 게재되었다. KAIST(한국과학기술원) 생명화학공학과 이상엽(李相燁, 42, LG화학 석좌교수, 생물정보연구센터 소장), 박선원(朴善遠, 58)교수팀은 과학기술부 특정연구개발사업의『시스템생물학연구개발사업』지원을 받아 다양한 생명현상의 정성 정량적 동적모사가 가능한 웹기반 가상세포 “WebCell”을 개발하여 전 세계에 공개했다. WebCell은 세포 내에서 일어나는 반응들에 대한 결과 예측 뿐 만아니라, 시간에 따른 변화들을 보여주는 동적 분석을 상세한 설명을 따라 인터넷 상에서 쉽게 수행할 수 있다. 또한, 기존 가상세포 소프트웨어의 프로그램마다 다른 형식으로 이루어져 사용에 어려움이 많던 파일들도 자유롭게 원하는 양식으로 변환이 가능하도록 하여, 연구 과정과 결과를 공유하여 더 빠르고 효율적인 연구가 가능해졌다. 또한, 인터넷 상에서 생물학적 네트워크를 모델링하고 만들어진 모델을 저장 및 교환할 수 있으며, 열역학 정보를 이용한 모델 검증, 변수 추정, 구조적 경로 분석 및 대사 조절 분석, 동적 시각화 등을 통한 네트워크의 체계적인 분석 기능을 통합적으로 제공한다. 그리고 기존에 발표된 모델들의 라이브러리도 제공하며 이용자가 자신의 ID로 접속할 수 있는 개인 라이브러리도 가질 수 있으므로, 가상세포 연구에 큰 역할을 할 것으로 기대된다. WebCell이 발표되자마자 시스템 생물학 연구 국제공동체인 SBML(http://sbml.org)에 등록되어 공개되었으며, 연구결과는생물정보학 분야 전문 국제 학술지인 영국 옥스퍼드대학 출판사 발간 바이오인포메틱스(Bioinformatics)지 5월호에 게재되었다. 이상엽 교수는 “향후 대사 흐름 분석 프로그램인 MetaFluxNet, 대사흐름분석 언어인 MFAML, 대사네트워크 전문 데이터베이스인 BioSilico와 연동하여 업그레이드 된 버전의 WebCell을 개발할 예정이며, 궁극적으로 이 모두가 통합된 가상세포를 개발할 예정이다”라고 밝혔다. WebCell 시스템은 웹브라우저를 통해 http://webcell.kaist.ac.kr 이나 http://www.webcell.org로 접속하여 사용자 계정을 획득한 뒤 이용할 수 있다. <용어설명> * SBML(Systems Biology Markup Language): XML을 기반으로 한 언어의 일종으로, 각기 다른 시스템 생물학 소프트웨어간의 가상 세포 모델의 교환을 용이하게 하기 위해 제안된 표준이다. 현재는 국제 공동 프로젝트로 발전하여, 전 세계 60여개 프로젝트가 이 사업에 공동으로 참여하고 있다. << WebCell 사용 샘플그림>>
2006.04.28
조회수 20970
KAIST-연세의대, 유니버설(범용) 암 진단시스템 개발
KAIST 이상엽, 연세 의대 유내춘, 금기창, 유원민 교수팀, 신규 범용 암 진단 마커인“네오노보” 개발 연세의대 임상 진행 중, 암 진단 시스템 상용화 박차 ■ 위암, 간암, 유방암, 췌장암, 신장암, 전립선암, 대장암 등 대부분의 암을 진단할 수 있는 인체 내 싸이토카인 변이체 네오노보(NeoNovo) 발견 ■ 네오노보 RNA와 DNA를 이용하여 암을 신속하게 동정할 수 있는 진단 기술과 유니버설(범용) 암 진단 DNA 칩 개발 ■ 네오노보 단백질을 대장균을 이용, 고효율로 생산하는 시스템 개발 ■ 개발된 네오노보 진단 시스템은 특정 암에만 한정되어 있지 않고, 다양한 종류의 암을 진단할 수 있는 세계에서 유일한 마커(marker)로서 향후 암 진단 및 예후에 있어 획기적인 기술로 평가 ■ 연세대 의대 세브란스병원은 임상연구심의위원회(IRB)를 개최, 2005년 12월 16일 네오노보 암 진단 임상연구 허가를 내렸으며, 현재 300건의 임상시험 실시 중 ■ 현재 유니버설 암 진단 DNA 칩, 단백질 칩, 진단 키트, 암 치료제 및 암 예방제 등 다양한 형태의 제품으로 연구개발 중이며, 국내외 암 연구 전문가 그룹과의 공동연구도 추진 예정 ■ 바이오벤처기업 메디제네스(주)의 지원으로 이루어진 이번 연구결과는 국내에 특허가 등록되었으며, 전 세계 특허 출원 중 1. 연구개발 과정 및 결과 ? 전 세계적으로 생명공학에 대한 관심이 급증하고 있으며 이러한 관심으로부터 암을 생명공학적인 관점에서 보다 효율적으로 진단 및 치료하는 시스템을 개발하고자 하는 노력이 경주되고 있다. KAIST 생명화학공학과 이상엽(李相燁, 42, LG화학 석좌교수) 교수가 연세대학교 의과대학 유내춘 교수(柳來春, 42), 금기창 교수(琴基昌, 42), 유원민 교수(柳元敏, 42)연구팀과 함께 위암, 간암, 유방암, 췌장암, 신장암, 전립선암, 대장암 등 10여종의 암을 효율적으로 진단 할 수 있는 새로운 마커(marker)인 싸이토카인(cytokine) 변이체 네오노보(NeoNovo)의 임상 시험 허가를 받아 진행 중이라고 밝혔다. 이 결과는 현재 세포학적 조직검사 등의 기존 검사법의 시간, 비용적인 단점을 해결할 수 있을 뿐만 아니라 이제까지 알려진 암 진단 마커들과는 달리 유일하게 10여종의 암을 모두 진단할 수 있는 우수성을 가지고 있는 것으로 향후 암 진단 시장을 획기적으로 바꾸어 놓을 수 있는 기술로 평가되고 있다. ? 현재 임상시험이 진행 중인 네오노보의 핵심기술은 이제까지 개발된 암 진단 마커들과는 달리 유니버설하게(범용으로) 암을 진단할 수 있는 인체 싸이토카인 변이체의 발견과 그 특허권 확보에 있다. KAIST와 연세의대 공동연구팀은 인체 싸이토카인의 변이체인 네오노보 RNA가 암 세포에서만 특이적으로 발현되는 것을 발견했다. 특히, 뇌암을 제외한 이제까지 시험한 모든 암 세포나 암 조직에서 네오노보가 발견됨으로써 이를 이용하여 진단 시스템을 개발하게 되었다. 연구팀은 네오노보가 인체내에 자연적으로 존재하는 싸이토카인이 선택적 스플라이싱(alternative splicing)과정을 통해 암세포에서만 특이적으로 나타남을 알아냈다. 바이오벤처기업 메디제네스의 지원으로 이루어진 본 연구는 현재 인체에 생기는 10여종의 암을 신속하게 동정할 수 있는 진단 특허권 확보에 주력한 결과 국내에는 변이체 단백질 네오노보의 원천특허가 등록되었으며, 해외 특허가 출원 중이다. 또한, 진단 제품 뿐 아니라 암 치료제 및 암 예방 및 억제제 등의 다양한 용도로 사용될 수 있을 것으로 보고 단백질의 응용에 관한 추가 특허가 출원 중이라고 KAIST 측은 밝혔다. 현재 암 진단시스템은 연세의대 금기창 교수의 주도로 임상시험이 진행 중이다. ? 연구진의 현재까지의 연구결과에 의하면, 네오노보는 암세포에서만 발견되고 정상세포에서는 발견되지 않았는데, 이는 기존의 암 마커가 정상세포나 정상인에도 있으나 암세포나 암환자에서 차이가 나는 것을 기반으로 하는 것과는 근본적으로 큰 차별성이 있다. ? 암이란 “통제할 수 없는 세포 성장”으로 특징지어지는 100개 이상의 관련 질환의 그룹을 기술하는데 사용되는 일반적인 용어이다. 이러한 비정상적인 세포 성장은 보통 종양(tumor)으로 알려진 세포 덩어리로 발전하고 주위의 조직으로 침투하고, 이어서 신체 다른 부위로 전이되어 생명을 위협하고 있는 질병중 하나로 4명중 1명 이상의 사람들은 그들의 생애 중에 어떤 형태로든 암을 가지게 된다고 알려져 있으며, 선진국에서 전체사망원인의 21%(사망원인 제 2 위)를 차지하고 있다. 일반적으로 말기상태의 암은 치료가 거의 불가능한 반면 초기 상태의 암은 치료율이 훨씬 높아서 초기에 정확하고 신속한 진단방법의 개발이 절실히 요구되고 있는 상황이다. 이제까지 여러 종류의 암 진단 마커가 발견되고 일부 사용되고 있지만, 1-3 종류의 암만을 진단할 수 있으며 그 정확도도 높지가 않은 편이다. 반면, 이번에 KAIST-연세의대 공동 연구팀이 개발한 네오노보 암 진단 시스템은 독자적으로 개발한 암 특이 단백질과 RNA 및 cDNA, 그리고 이들의 응용까지에 대한 포괄적인 원천 특허권을 확보한 상태에서 세계적으로 유일하게 간암, 위암, 유방암, 폐암 뿐만 아니라 기타 10종 이상의 암에서도 70%-100%의 높은 효율로 진단할 수 있는 마커라는 점에서 향후 세계 보건의료 및 생명공학 시장에 큰 파장을 불러올 것으로 예상된다. ? 또한, KAIST 이상엽 교수팀은 네오노보 재조합단백질을 봉입체 형태로 과량 생산하는 대장균 시스템을 이용하여 암 특이 단백질을 대량 생산하는데 성공하였다. 대량 생산된 네오노보 단백질을 이용하여 조직염색, 면역학적 기술에 접목시켜 보다 편리한 진단 시스템에 응용하는 연구를 진행 중이다. 한걸음 더 나아가, 생산된 암 특이 단백질의 세포 내의 기능에 대한 연구를 진행하고 있다. 2. 연구개발성과 및 향후계획 ?휴먼 게놈 프로젝트가 완료된 것을 비롯하여, 최근 여러 생물 종에 대한 게놈 정보가 쏟아져 나오고 있다. 암에 대한 연구 또한 기존의 유전자 돌연변이에 대한 연구를 벗어나 암 특이 발현 유전자 및 단백질에 대한 연구가 많이 시도 되고 있다. 이번에 개발된 진단 시스템 또한 암에서만 특이 발현되는 단백질과 그 유전자를 기반으로 개발된 획기적인 시스템이다. 이 진단 시스템을 이용하면, 단 2가지의 유전정보 및 단백질 발현 형태만으로도 암의 여부를 일시에 검색할 수 있고, 정확도도 70% 이상이다. 체외 진단 시장은 연간 25조원 이상이며, 지속적으로 팽창하고 있다. 이중 특히 암 진단 시장은 고속으로 증가할 것으로 예측되고 있으므로 본 기술의 파급효과는 엄청날 것으로 기대 된다. ? 임상시험을 주도하고 있는 연세의대 방사선 종양학과 금기창 교수는 “이미 암 세포주를 이용한 기초 실험 결과는 놀라울 정도로 진단 효율과 성공률이 높게 나온 상황이고, 지금까지의 임상 시험도 잘 진행 중이므로, 최종 임상결과에 큰 기대를 가지고 있다”라고 말하고, “향후 메디제네스와 함께 범용 암 진단 시스템 개발은 물론, 관련 암 치료 및 암 예방 의약의 개발로도 연구를 할 예정이다”라고 밝혔다. ? KAIST 이상엽 교수는 “원천 특허권 확보가 이루어진 지금 유니버설 암 진단 시스템의 상용화의 추진은 물론, 국내외 암 전문 연구기관과 공동으로 연구를 추진하여 인류 건강의 가장 큰 위협 요인인 암을 예방, 치료하는데 기여하고 싶다”는 포부를 밝혔다. 네오노보의 RNA 발현 여부를 검색함으로써 암세포와 정상세포를 명확하게 구별해내는 네오노보 유니버설 암진단 DNA칩 실험 결과. 초록색 형광 점은 각각 특정 서열을 가지는 DNA 조각으로서 정상세포에서 나타나는 RNA와 암세포에서 나타나는 네오노보 RNA를 특이적으로 진단할 수 있도록 디자인된 것이다. 분자량 마커 생산된 네오노보 단백질 재조합 대장균을 이용하여 생산하고 정제된 네오노보 단백질. 네오노보 RNA로부터 DNA를 합성하여 대장균에 도입하고, 재조합대장균을 키워서 네오노보를 다량 생산한 뒤, 크로마토그래피 (chromatography)를 통해 순수하게 정제된 재조합 네오노보 단백질. 생물정보학 기법으로 예측한 네오노보 단백질의 구조
2006.03.28
조회수 20318
생명화학공학과 이상엽교수팀, 게놈 정보 이용 숙신산 고효율 생산 균주 개발
과학기술부 게놈정보 활용 통합 생물공정 원천기술 개발 사업 결실 1. 연구 개발 과정 및 결과 전 세계적으로 최근까지 350여종 이상의 생물체에 대한 전체 게놈 서열이 발표되고 1900여종에 대한 게놈서열이 진행되고 있다. 따라서 이들 정보를 활용한 게놈 수준의 연구에 대한 관심이 집중되고 있는 시점에서, 국내에서 게놈에서 생물공정까지 이르는 체계적인 연구기법을 통해 유용한 화학물질을 효율적으로 생산하는 미생물을 개발하는 개가를 올렸다. KAIST 생명화학공학과 이상엽 LG화학 석좌교수(李相燁, 42세)연구팀이, 자체적으로 완성한 맨하이미아 균주의 게놈 정보를 기반으로 대사공학 기법을 활용하여 숙신산 고효율 생산 균주를 개발하였다고 9일 밝혔다. 이번 연구에 사용된 균주는 이교수팀이 한우의 반추위에서 분리한 맨하이미아균으로서, 이 균주의 게놈 프로젝트 완성 결과는 우리나라 최초의 게놈 논문으로 2004년 10월 네이처 바이오테크놀로지 (Nature Biotechnology)에 게재한 바가 있다. 이 교수는 이상준 박사, 송효학 박사와 함께 과학기술부 게놈 정보 활용 통합생물공정 원천기술 개발사업의 지원으로, 게놈 수준에서의 대사공학 기법을 적용하여 고효율로 숙신산을 생산함과 동시에 문제가 되는 부산물의 생산을 최소화 할 수 있는 균주를 개발하는데 성공하였다. 즉, 이제까지의 균주개발 연구 방식을 뛰어 넘어 게놈에서 유용한 생명공학제품의 효율적인 생산을 가능하게 하는 새로운 연구 모델을 제시하고, 이를 검증받았다는 점에서 그 의미가 더욱 크다. 이 교수팀은 생물정보학 기법을 이용하여 맨하이미아 게놈 정보로부터 숙신산 생산에 직.간접적으로 관여하는 유전자들을 발굴하고, 이를 바탕으로 숙신산은 많이 만들면서 초산, 젖산, 개미산 등 부산물은 거의 만들지 않는 균주를 디자인 하였다. 이렇게 디자인된 균주를 실제 제작하기 위하여 신규 유전자 조작 시스템 개발을 시작으로, 균주 유전자 제거 기술, 형질전환 기술 등을 개발하였고, 회분식 유가식 배양기술을 개발 실제 발효 연구까지 수행함으로서 게놈에서 생물공정에 이르는 체계적인 시스템을 개발하게 되었다. 2. 연구 개발성과 및 향후계획 맨하이미아를 이용하여 생산하는 숙신산은 일명 호박산으로 화학 핵심 전구체로 사용되어지고 있으며, 생분해성 고분자, 청정용매 (green solvent) 등으로도 사용이 가능하여 향후 1조원 이상의 시장규모를 형성할 것으로 예상되고 있다. 이 교수팀이 개발한 숙신산 과생산 균주개발 기술은 향후 우리나라에서 바이오기반의 화학물질 생산기술 개발에 있어 우위를 점할 수 있는 상징적인 의미가 있으며, 실제 바이오 기반 숙신산 생산기술의 상용화 가능성을 높여주었다는 평가를 받고 있다. 선진국을 중심으로 지속가능한 산업개발의 핵심으로서 원유에 의존하지 않고 재생 가능한 원료로부터 화학물질을 생산하는 환경친화적인 기술개발에 집중적인 연구 개발이 이뤄지고 있다. 이러한 시점에서, 이번 이교수팀이 개발한 연구 결과는 국내 바이오산업이 미국, 유럽, 일본 및 다른 선진국보다 우위성을 가질 수 있는 핵심 기술이 될 수 있다는 가능성을 보였다는 점에서 큰 의미가 있다. 특히, 우리나라 생명공학자들이 다양한 산업생명공학 기술 개발에 박차를 가하고 있어 그 전망이 더욱 밝다고 하겠다. 특히, 맨하이미아 균은 숙신산을 생산하기 위하여 다량의 이산화탄소를 고정화함으로써 교토협약 및 UN 기후변화협약에의 대응에도 기여할 뿐 아니라, 배럴당 60불 이상의 고유가 시대에 원유에 의존하지 않고 재생가능한 원료로부터 숙신산 생산을 가능하게 함으로써 같은 기술을 다른 화학물질과 바이오에너지 생산에 적용함으로서 국내 원유 수입 의존도를 줄일 수 있다. 이번에 개발된 숙신산 고효율 균주와 관련하여 대사공학적으로 고효율 숙신산 생산 균주 특허 1건, 핵심 유전자 특허 3건, 배양 특허 1건이 출원되었으며, 미국 미생물학회에서 발간하는 응용미생물 관련 권위 학술지인 응용환경미생물학지(Applied and Environmental Microbiology) 3월호에 게재되었다. 이 교수는 “게놈 정보로부터 균을 체계적으로 엔지니어링하여 숙신산 고효율 균주를 탄생시킨 이상준 박사와 그에 따른 다양한 발효기술을 개발한 송효학 박사가 함께 만들어 낸 훌륭한 합작품이다”라고 평가하고, “향후 관련 기술을 지속적으로 발전시켜 게놈정보를 이용한 통합적인 생물공정 개발 원천기술을 확보하여 우리나라 생명공학 산업의 발전에 기여하고 싶다”고 말했다.
2006.03.14
조회수 19630
생명화학공학과 양승만 교수팀 연구결과, 네이처誌 하이라이트로 소개
물방울 이용 나노트렌지스트 만든다” 생명화학공학과 양승만(梁承萬, 55) 교수팀에서 수행한 연구결과가 2월 2일자 네이처誌 하이라이트로 소개됐다. 네이처誌는 “News and Views”란에 네이처誌에 게재된 논문 가운데 2-3편과 그 밖에 국제적으로 저명한 학술지에 게재된 논문들 가운데 학술적 가치와 기술 혁신성이 높은 것들을 매주 1-2편 선정하여 논문 내용을 논평과 함께 특필하고 있다. 이번 네이처誌에 소개된 연구는 양승만 교수팀에서 “액적내부에서 혼성콜로이드입자의 자기조립(Self-organization of Bidisperse Colloids in Water Droplets)" 이라는 제목으로 화학분야 가장 권위 있는 학술지의 하나인 미국 화학회지 (Journal of the American Chemical Society: JACS)에 최근 게재됐다. 이 논문은 양승만 교수팀 조영상씨의 박사 학위 논문 일부로 수행된 것이다. 이 연구의 핵심 아이디어는 나노미터 수준의 작은 입자와 마이크로미터 크기의 큰 입자를 지름이 약 50마이크로미터 정도(머리카락 굵기의 약 절반 정도)의 물방울 속에 정해진 수만큼 가두고 물을 서서히 증발 시키면 입자들이 스스로 규칙적인 구조로 조립된다는 것이다. 즉 큰 입자와 작은 입자들이 자기조립을 하면서 작은 입자가 큰 입자 사이에 규칙적으로 쌓이게 된다. 네이처誌는 이 연구의 독창성과 발전가능성을 상세히 해설하고 있다. 네이처誌는 이 연구가 특별히 조명 받아야 하는 이유를 크게 두가지로 나누어 다음과 같이 설명하고 있다. 첫째, 이러한 자기조립 소재는 고밀도 정보처리를 위한 나노트랜지스터로 쓰일 수 있다는 점이다. 이는 반도체 나노입자와 절연체 마이크로입자로 구성된 자기조립 소재가 트랜지스터의 기능을 보유하기 때문이다. 둘째, 벽돌로 건축물을 쌓듯이 큰 입자로 구성된 자기조립 소재를 나노 벽돌로 이용, 3차원 구조물을 조립하면 소위 다이아몬드 격자구조의 광자결정(photonic crystal)을 만들 수 있다는 것이다. 이러한 다이아몬드 격자구조를 갖는 광자결정은 완전히 열려 있는 광밴드갭(photonic bandgap)을 보유하고 있다. 즉, 이 구조의 광자결정은 특정한 파장 영역대의 빛만을 입사각에 관계없이 완전히 반사시키는 기능을 보유하게 된다. 이 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 광자결정의 특수한 기능으로 인하여 나노레이저, 다중파장의 광정보를 처리할 수 있는 수퍼프리즘(superprism), 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발에 필요한 소재로 주목 받고 있으며 사이언스誌에서는 21세 가장 주목받는 핵심 기술 10개 중에 하나로 선정한 바 있다. 이밖에도 마이크로 입자의 표면을 형광체와 DNA로 도핑하면 개개의 입자들이 각각 다른 정보를 전달하는 나노 리포터(nano-reporter)로 작용할 수 있고, 이들을 조합라이브러리(combinatorial library) 형태를 구현하면 발현된 정보를 한꺼번에 생물학적 또는 광학적으로 인코딩하여 방대한 바이오정보를 신속하게 처리할 수 있다. <복합 콜로이드를 이용하여 제조한 혼성 콜로이드분자>
2006.02.03
조회수 23327
생명화학공학과 이상엽 교수, 획기적인 단백체 분석 기술 개발
과학기술부 시스템생물학 연구개발사업 결실 열충격 단백질이 세포외에서 단백질 분해를 효과적으로 억제하는 현상 최초 규명 기존 단백질 분해 저해제보다 최고 50% 이상 단백질 검출 가능 기술 개발 전세계 특허 출원/등록 중, 단백체 연구분야 권위지 미국화학회 발간 저널 오브 프로테옴 리서치에 게재 예정, 온라인판에 공개 생명화학공학과 이상엽 교수(李相燁, 41, LG화학 석좌교수)가 작은 열충격 단백질의 세포외 단백질 분해 저해 기능을 적용하여 획기적으로 향상된 새로운 단백체 분석 기술을 개발했다. 1. 개발배경 포스트 게놈 시대의 가장 주목 받는 연구 분야로서, 또한 시스템 생물학의 중심이 되는 한 분야로서, 세포의 생리적 변화를 단백질 수준에서 관찰할 수 있는 단백체(프로테옴) 연구에 대한 관심이 집중되고 있다. 단백체 연구의 가장 핵심적인 기술은 세포, 조직, 또는 생물체 유래 샘플을 폴리아크릴아마이드젤(polyacrylamide gel) 상에서 2차원 전기영동방법으로 분리하는 것이다. 이때 전체 단백질들을 분석할 수 있도록 단백질 분해를 막는 것이 매우 중요하다. 이제까지 다양한 단백질 분해 저해제들이 개발되어 실험에 사용되어 왔다. 하지만, 단백체 분석시 2차원 전기영동된 젤(gel)에서는 단백질 분해 등의 현상으로 인해 게놈에서 예측되는 숫자보다 훨씬 적은 수의 단백질들이 발견되어 전체 단백질 대상 연구에 한계를 드러냈다. 2. 개발현황 과학기술부 시스템생물학 연구개발사업으로 진행된 이 연구에서 李 교수팀은 대장균의 전체 전사체와 단백체를 분석하고, 이들을 대사 및 조절회로에 연관시키는 과정에서 작은 열충격 단백질의 새로운 기능을 발견하게 되었다. 직접 대장균에서 작은 열충격 단백질을 생산ㆍ정제하고, 이를 이용한 세포 밖 시험관 (in vitro)에서 작은 열충격 단백질이 다양한 효소에 의한 단백질 분해를 효율적으로 억제함을 규명하였다. 또한, 다른 종에서 유래한 작은 열충격 단백질들도 마찬가지로 단백질 분해를 억제하는데 사용될 수 있음도 밝혀냈다. 李 교수팀은 단백체 연구의 핵심기술 중의 하나인 2차원 전기영동시 단백질이 분해되어 변형되거나 없어지는 문제를 해결하고자 이 발견된 기술을 적용하였다. 2차원 전기영동시 작은 열충격 단백질 첨가로 단백질 분해 현상을 저해시킬 수 있음을 밝혀내었다. 기존에 알려진 단백질 분해 저해제를 적용하였을 때는 검출 되지 않았던 단백질들도 이 새로운 방법을 이용하였을 때 검출 가능하였다. 최고 50% 이상 증가된 숫자의 단백질들이 보일 정도로 획기적인 기술로 평가된다. 또한, 이 방법을 미생물뿐 아니라 사람, 식물 유래의 다양한 단백질 시료에도 적용하여 모든 경우에서 그 효과를 확인함으로써, 이 기술이 매우 광범위한 단백질 시료에 적용 가능함을 보여 주었다. 3. 개발성과 및 향후계획 기존의 방법으로 검출 되지 않았던 단백질들이 새로 개발된 방법으로 검출 가능하므로 단백체를 이용한 세포내 생리 변화 관찰 또는 질병 진단 표지 개발 등에 상당한 고성능의 분해능을 제공해 줄 수 있다. 李 교수는 “모든 단백체 분석에 적용이 가능한 이 기술이 향후 단백체 연구 분야에 획기적인 발전을 가져올 것으로 기대한다”고 말했다. 이 기술은 현재 전 세계 특허 출원/등록 중이고, 미국화학회 (American Chemical Society)에서 발간하는 단백체 분야의 권위 있는 학술지인 저널 오브 프로테옴 리서치 (Journal of Proteome Research)에 실리게 되며, 온라인 판에 게재 되었다. <사진설명> 작은 열충격 단백질 첨가에 의한 단백질 분해를 최소화시켜 분석가능한 단백질 수를 획기적으로 늘린 결과를 보여주는 젤(gel) 사진 (왼쪽 위부터 시계방향으로) 1. 대장균 단백질 시료에 기존에 시판되는 단백질 분해억제제인 칵테일 인히비터를 첨가하여 2차원 전기영동한 젤 2. 같은 시료에 IbpAEc (대장균 유래의 작은 열충격 단백질)를 첨가하여 2차원 전기영동한 젤 3. 같은 시료에 Hsp26Sc (효모 유래의 작은 열충격 단백질)를 첨가하여 2차원 전기영동한 젤 4. 같은 시료에 IbpBEc (대장균 유래의 또 다른 작은 열충격 단백질)를 첨가하여 2차원 전기영동한 젤 - 각 그림의 원 안은 확대된 이미지로서 작은 열충격 단백질 첨가시 까만점(단백질)의 수가 획기적으로 늘어났음을 볼 수 있음.
2005.11.11
조회수 19058
인체 감염 44종의 원인균 동시 진단용 DNA 칩 개발
KAIST, 연세대 의대, 메디제네스㈜ 공동연구 결실벤처회사와 공과대학이 DNA칩 제작, 의대에서 임상실험하는 바람직한 협력연구의 성과로 평가 사람의 생명을 위협하는 감염질환의 원인균 44종을 동시에 진단할 수 있는 DNA 칩이 국내 공동연구진에 의해 세계 최초로 개발되었다. 메디제네스 ㈜ (대표이사 이진, 李津, 39)는 KAIST 생명화학공학과 이상엽(李相燁, 41, LG화학 석좌교수)교수팀, 연세대 의대 감염내과 김준명(金俊明, 52) 교수팀(김준명, 장경희, 최준용 박사)과의 공동연구를 통해 감염질환에 자주 나타나는 주요 원인 균주 44종을 신속하게 동정(실체를 밝히는 것)할 수 있는 DNA칩을 개발했다고 9일 밝혔다. 감염질환은 세균이 인체의 내외부에 침입하여 혈액, 체액 및 조직 내에서 자라면서 발병하는 질환으로, 세균의 정확한 진단 및 적절한 치료가 이루어지지 않을 경우, 생명을 잃을 수도 있는 질병이다. 더욱이 최근에는 항생제의 오남용으로 인해 세균의 배양률이 크게 낮아 배양 검사와 같은 기존의 감염질환 진단 방법들이 한계에 부딪치고 있어 항생제의 추가적인 남용 및 검사비용의 낭비 등을 야기할 뿐만 아니라, 적합한 항생제의 투여시기를 놓쳐 환자의 생명이 위협받고 있다. 이번에 메디제네스㈜ 가 개발한 감염질환 진단용 DNA칩은 임상적으로 가장 빈번하게 출현하여 심각한 질병을 일으키는 원인균 44종을 동시에 진단할 수 있다는 특징이 있다. 메디제네스㈜는 KAIST 이상엽 교수팀, 연세대 의대 김준명 교수팀과 공동으로 감염 균주들의 균체 특이성이 높은 DNA조각을 직접 염기서열을 결정하여 특허 출원하였고, 일부 알려진 균들에 대하여는 생물정보학 기법으로 특이한 염기서열 부분을 찾아내는 방식으로 DNA 칩을 제작 하였다. 이 DNA칩은 작은 유리판에 감염질환을 일으키는 균주의 특정 DNA 염기서열과 결합할 수 있는 DNA 조각을 심은 것으로, 균주에서 추출한 DNA와 칩에 심어진 DNA가 칩의 어느 위치에서 결합하는지에 따라 원인균을 쉽게 동정할 수 있도록 설계되어 있다. 이상엽 교수는 “이 DNA 칩의 핵심기술은 우리가 자체적으로 염기서열을 밝혀서 그 서열에 관한 특허를 확보하였고, 이들로 만든 DNA 조각을 이용하여 매우 효과적으로 감염균주들을 감별해 내는데 있다. 칩 자체의 제작도 중요하지만, 임상 시험이 매우 중요한데, 공과대학과 벤처회사가 DNA 칩을 만들고, 의과대학에서 임상시험을 하는 아주 바람직한 형태의 협력연구가 결실을 맺게 되어 기쁘다.”고 밝혔다. 따라서 이번에 개발된 DNA 칩을 이용하면 환자로부터 얻은 다양한 임상 샘플내에 어떤 세균이 존재하는지를 한번의 검사로 빠른 시간내에 정확하게 진단함으로써 가장 적합한 항생제를 투여할 수 있게 된다. 기존 검사법은 균주를 일일이 배양해서 확인했기 때문에 보통 3일 이상 심지어는 몇 주 이상 소요되고 배양률도 50% 이하인데 비해, 이 칩은 14시간 정도면 여러 균주를 동시에 검색할 수 있고, 정확도도 더 높일 수 있는 장점이 있다. 이 관련 기술들은 현재 특허 출원 중이고, 예비임상시험을 마친 후, 대규모 임상시험을 연세대학교 의과대학 김준명 교수팀에서 진행 중이다. 김준명교수는 “최근에 항생제 오남용으로 감염질환의 원인균 동정에 큰 어려움을 겪고 있는 현 실정에서 이러한 DNA칩을 통한 진단법 개발은 임상에서 빠른 시간 안에 원인균을 밝혀내고, 그로 인해 환자에게 꼭 필요한 항생제를 조기에 투여함으로써 환자의 생명을 구하는 획기적인 전기가 되리라 생각한다”고 말했다. 이 감염질환 진단용 DNA칩을 이용함으로써 감염질환 치료를 위해 과다하게 소요되는 항생제 비용을 대폭 절감(연간 약 5천억원)할 수 있을 뿐만 아니라, 보통 한 환자당 2-3번의 원인균 배양이 이루어지는 기존의 검사방법에서 탈피하여 한 번의 검사로 진단이 가능함으로써 감염질환 관련 검사 비용 연간 수백억원이 절감될 수 있을 것으로 예상된다. 메디제네스㈜ 이진사장은 “앞으로 추가 임상 시험 후 식품의약품안전청의 허가를 받은 후 내년에는 국내 각 병원과 연구소에 판매할 계획이며, 이 칩의 판매로 국내에서만 내년에 30억원, 향후 연간 100억원 이상의 매출을 올리고자 하며, 연간 약 2조원으로 추정되는 세계 시장 개척에도 적극적으로 대처하고자 한다.”는 계획을 밝혔다.
2005.06.10
조회수 19820
KAIST 출신 이동엽 박사, 싱가폴 대학 교수와 국립연구소에 동시 부임
생물학, 전산학, 시스템공학 융합학문인 생물정보학 및 시스템생물학 전공 국내외 17편의 논문발표와 가상세포 모델 개발로 주목받고 있는 연구자 KAIST 출신 토종박사가 세계 20위권의 싱가포르 국립대학의 조교수로 임용됨과 동시에 싱가포르의 대표적인 정부연구소인 생물공정기술연구 소(Bioprocessing Technology Institute, BTI)의 연구원으로 초빙되었다. 화제의 주인공은 KAIST 생명화학공학과(지도교수:박선원, 공동지도교수:이상엽)에서 박사학위를 받고 현재 KAIST 생물정보연구센터(소장 : 이상엽)에서 선임연구원으로 재직 중인 이동엽(李東燁, 31)박사. 李 박사는 KAIST에서 국내 최초로 생물학과 전산학, 그리고 시스템공학의 최첨단 융합학문인 생물정보학 및 시스템생물학을 전공했으며, 국내외 17편의 논문발표와 가상세포 모델 개발로 국내외의 주목을 받고 있었다. 현재는 과학기술부의 시스템 생물학 연구사업에서 이상엽 교수팀의 인실리코(in silico)부분 팀장으로 활동하고 있다. 최첨단 생명공학 시설을 가지고 있는 싱가포르의 BTI 연구소에서는 이미 연구원으로 결정된 상태였지만, 연구소와 학교의 협력연구를 李 박사가 제안했고, 마침 시스템 생물학연구를 처음 시작하는 싱가포르 국립대학이 李 박사를 찾게 된 것이다. 이후 싱가포르 국립대학은 BTI 연구소와의 4개월에 걸친 협의 끝에 연구소와 학교에서 동시에 일할 수 있도록 요청하였다. “BTI는 싱가폴 바이오 산업관련 정부투자연구소와 글락소스미스클라인(GSK), 노바티스를 비롯한 세계적인 제약회사의 연구개발(R&D)센터가 모여 있는 생명과학 복합단지(바이오폴리스)에 위치한 최첨단 정부연구소 중의 하나이다.” “이제는 모든 학문 간에 벽은 더 이상 존재하지 않는다고 본다. 경쟁력을 갖추기 위해서는 이들을 어떻게 융합해서 새로운 것을 이끌어 내느냐가 관건이다.” 李 박사는 이러한 융합기술을 적용할 수 있는 최적의 장소가 싱가포르라며, 싱가포르 국립대학의 훌륭한 교수진과 학생들, 그리고 BTI 연구소의 최첨단 실험장비를 활용, 접목하는 가교역할을 하게 될 것이라고 포부를 밝혔다. 이번 李 박사의 임용은 외국의 박사학위나 포스트 닥 경험이 없이 순수하게 국내에서 연구해 외국에 진출하는 성공적인 사례로 꼽히며, 이것이 가능했던 이유는 박사과정동안 세부 전공이 전혀 다른 두 명의 공동지도교수의 전공을 융합해서 새로운 전공을 만들 수 있었기 때문이다. KAIST 생명화학공학과의 박선원 교수와 이상엽 교수는 각각 화학공정시스템 분야와 생명공학 분야의 세계적인 권위자로, 과학기술부의 시스템 생물학 연구사업의 일환으로 공동연구를 위해 동시에 지도하게 된 것이다. 또한 李 박사는 BK21 화공사업단(단장 박정기 교수)의 지원을 받아 미국, 독일에서의 단기 해외 연구를 한 경험이 외국대학에서 교수도 할 수 있다는 자신감을 갖는데 도움이 되었다고 밝혔다. 이상엽 교수는 “이동엽 박사는 정말 보기 드문 재원이다. 넘치는 아이디어와 적극적인 연구자세는 최고 수준이다. 싱가폴에 가서도 KAIST와 지속적인 협력 연구를 하게 될 것이다.” 라며, 큰 기대감을 표시했다. 박선원 교수는 “이동엽 박사는 연구에 대한 열정이 대단히 커서 공정시스템 분야에서도 많은 연구를 했고, 공정시스템분야와 대사공학 분야의 기술들을 융합, 시스템 생물학 분야에 좋은 연구결과를 내었다. 앞으로 싱가포르 측과 KAIST간의 공동연구로 큰 시너지 효과를 낼 수 있을 것으로 기대된다.” 라고 밝혔다. KAIST 생명화학공학과 박승빈 학과장은 “현재 우리 학과의 국제화 지수는 매우 높은 편이다. 외국인 석박사 유학생도 10여명 있고, 영어강의도 많이 개설되는 편이다. 박사과정 세미나를 영어로 하고 있고, 일년에 한 두번은 국제학술회의에서 영어로 발표할 기회를 갖고 있다. 이는 교육부의 BK21 국제화 사업의 일환으로 가능했다. 앞으로 이런 분위기가 지속되어 많은 졸업생들이 이동엽 박사와 같이 국제적으로 인정받는 인재가 되기를 바란다” 고 말했다.
2005.06.09
조회수 26400
생명화학공학과 이상엽교수, 美 미생물학술원 펠로우에 선임
미생물 대사공학 분야 150여편 논문발표 업적 높이평가,한국인으로서는 두 번째 선임 KAIST 생명화학공학과 및 바이오시스템학과 이상엽 교수(李相燁, 41세, LG화학 석좌교수)가 최근 미국 미생물 학술원 (American Academy of Microbiology)의 회원 겸 펠로우 (Fellow)에 선임되었다. 미국 학술원측은 그간 李 교수가 미생물 대사공학 분야에서 150여 편의 논문을 발표하였고, 미생물 연구 분야에 시스템생물학 융합연구 기법을 새롭게 적용해온 미생물 공학 분야의 연구 업적을 높이 평가, 펠로우에 선임한다고 밝혔다. 회원 수 4만2천명에, 생물 관련 단일 학회 중 세계에서 가장 오래된 미국 미생물 학회(American Society for Microbiology)에서 리더 그룹의 모임인 미국 미생물 학술원은 학문적 산업적으로 탁월한 업적을 낸 사람들 중 엄격한 선정과정을 거쳐 펠로우를 선임한다. 미국 학술원이니 만큼 외국인 펠로우는 많지 않은데, 전통적으로 미생물 분야 연구에 강했던 일본과 독일이 각각 29명과 23명으로 많고, 중국 1명, 말레이시아 1명, 헝가리 1명, 필리핀 1명 등이다. 우리나라는 지금까지 1명에서 이번 李 교수의 선임으로 2명으로 늘어나게 되었다. 미국 미생물 학술원은 미생물학자들 중 세계를 선도하는 학자나 연구자들을 펠로우에 선임하는데, 李 교수의 경우 공학자로서 선임된 특이한 경우로서, 미국을 포함한 세계 전체의 펠로우들을 보더라도 손으로 꼽을 만큼 몇 안되는 경우에 해당한다. 한편, 李 교수는 10여개의 세계적인 전문 학술지의 편집자, 편집위원으로 활동하고 있으며, 최근 한국공학한림원의 “젊은공학인상”을 수상한 바 있다. 박테리아를 유용 물질을 생산하는 공장과 같이 활용하는데 관련된 제반 생명공학 연구분야에서 왕성한 활동을 하고 있다.
2005.06.08
조회수 20094
<<
첫번째페이지
<
이전 페이지
31
32
33
>
다음 페이지
>>
마지막 페이지 33