본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EA%B5%90%EC%9C%A1%EA%B3%BC%ED%95%99%EA%B8%B0%EC%88%A0%EB%B6%80
최신순
조회순
박병준 홍정희 KI 빌딩 기공식
- 총공사비 360억원, 연면적 21,120㎡(6,980평), 지하 1층 , 지상 5층 규모 - KAIST Institute (바이오융합연구소, IT융합연구소, Complex Systems 설계연구소, 엔터테인먼트공학연구소, 나노융합연구소, 청정에너지연구소, 미래도시연구소,광기술연구소) 우리학교는 오는 9일 11시, 교내 ‘박병준 홍정희 KI(KAIST Institute, KAIST 연구원)빌딩’ 부지에서 서남표 총장을 비롯한 주요 보직자와 재미사업가인 박병준(朴柄俊, 74, 뷰로 베리타 특별자문위원)회장, 시공사인 계룡건설 한승구 대표이사 등이 참석한 가운데 창의적․다학제적 융합연구를 지원하기 위한 ‘박병준 홍정희 KI 빌딩’ 기공식을 갖는다. ‘KI’ 빌딩은 박병준 회장의 기부금 미화 1,000만 달러를 포함한 총공사비 360억원을 투입, 21,120㎡(약 6,980평) 부지에 지하 1층, 지상 5층 규모로 건립된다. 2009년 12월 준공 예정이다. 지하는 클린 룸과 공동 장비실이 들어서고, 1~2층은 국제회의를 개최할 수 있는 대형 회의실과 연구성과전시장으로 꾸며지며, 3~5층은 순수 연구동으로 8개 ‘KI’의 핵심 연구팀이 입주하게 된다. 특히, 연구실 및 실험실은 붙박이 벽과 시설을 배제하고 신축성 있는 소재와 구조로 배치, 연구목표와 성과평가를 통하여 새로운 연구팀이 지속적으로 유입될 수 있는 시스템으로 운영된다. ‘KI’ 설립사업은 美 MIT 링컨연구소처럼 세계적 연구개발 성과를 통하여 대학의 인지도를 높이고, 국가 경쟁력 향상에 기여할 목적으로 2006년부터 KAIST가 역점적으로 추진해온 전략사업 중 하나다. 현재 바이오, IT융합, 시스템설계, 엔터테인먼트공학, 나노, 청정에너지, 미래도시, 광기술 등 8개 분야에 18개 학과 230여명의 교수가 학문간 경계를 허물고 활발한 융합연구를 수행하고 있다. 김상수 KAIST 연구원장은 “KI가 지향하고 있는 융합연구를 위해서는 분산된 인력과 장비를 한 곳에 결집시켜야 하는데 그동안 마땅한 연구공간이 없어 사업수행에 어려움이 많았다. 교육과학기술부와 박병준 회장께 감사한다. 강점분야에 대한 선택과 집중을 통해 세계적 연구성과를 창출 하겠다”고 운영 목표를 밝혔다.
2008.09.09
조회수 17351
이상엽교수팀, 시스템생물학 기반 산업용 미생물 개발 전략 제시
-생명공학분야 권위 리뷰지 “생명공학의 동향 (Trends in Biotechnology, Cell Press)” 표지 논문 게재 우리학교 생명화학공학과 및 바이오융합연구소 이상엽(李相燁, 44세, LG화학 석좌교수) 특훈교수와 바이오융합연구소 박진환(朴軫煥, 38세) 박사 연구팀이 다가오는 산업바이오텍 시대에 경쟁력을 갖추기 위한 시스템 생물학 기반의 미생물 대사공학 전략을 개발했다. 이 연구 결과는 셀(Cell)誌가 발행하는 생명공학 분야 최고 권위 리뷰지인 생명공학의 동향(Trends in Biotechnology) 8월호 표지 논문에 게재됐다. 교육과학기술부 게놈 정보 활용 통합 생물공정 개발 사업의 일환으로 수행한 이번 연구는 산업용 미생물을 개발함에 있어 유전체 및 기능 유전체 정보와 가상세포 시뮬레이션을 통합 적용하고, 발효 및 분리정제 공정까지 고려한 대사공학 방법을 제시함으로서 다가오는 바이오 기반 산업 시대에 경쟁력을 갖는 균주 개발 전략을 체계적으로 제시한 것으로 평가됐다. 유가가 고공행진을 계속하고 지구온난화 등 환경문제가 심각하게 대두되는 지금 세계 각국은 바이오매스를 이용하여 화학, 물질, 에너지 등을 생산하는 바이오기반 산업 시스템 구축에 박차를 가하고 있다. 미생물을 이용한 산업바이오텍 공정이 경쟁력을 갖추기 위해서는 자연계에서 분리된 미생물의 낮은 성능을 대폭 향상시키기 위하여 대사공학으로 미생물을 개량하여야 한다. 기존의 산업바이오텍에 사용되는 미생물 균주 제조 방법과 공정개발은 무작위 돌연변이화 및 균주의 일부분만 직관적으로 조작하는 방법에 의해 수행되었다. 하지만 이들은 원하지 않은 부분에도 돌연변이를 일으켜, 균주 전체의 대사 상태를 한눈에 볼 수 없으며, 향후 환경이 바뀌었을 때 추가 개발이 용이하지 않다는 단점이 있었다. 李 교수 연구팀은 시스템 생물학의 원리에 입각하여 크게 3 단계로 나누어 체계적으로 미생물을 개발하는 새로운 전략을 제시하였다. 1단계에서는 미생물의 조절 기작 등 연구를 통해 알게 된 사실에 기반하여 게놈상의 필요한 부위만을 조작, 초기 생산균주를 제작한다. 2단계에서는 시스템 수준의 분석을 통하여 확보한 오믹스 데이터와 가상세포의 시뮬레이션 결과를 융합, 세포내의 대사흐름 최적화를 통해 목적 산물을 최고 수율로 생산할 수 있는 균주를 제작한다. 마지막 3단계에서는 실제 생산 공정 개발 단계에서 생길 수 있는 문제점들을 시스템 생물학 기법에 입각하여 해결함으로써 우수 산업용 균주의 제조를 완료한다. 이 전략은 시스템 생물학 원리를 이용하여 균주 전체의 생리 대사 현상을 한눈에 파악하면서 균주의 대사공학적 개량이 가능하다는 점에서 기존의 방법과는 차별된 한 차원 높은 수준의 균주개발 전략이라고 할 수 있다. 이번 논문의 첫 번째 저자인 朴 박사는 "최근 연구팀에서 수행 중인 시스템 생물학 기법을 이용한 실제 균주 제작 과정의 경험과 결과를 토대로 전략을 확립 제시하였기 때문에 실제 생명공학 산업계에 종사하는 연구자들에게 실질적인 도움이 될 것으로 생각한다“고 말했다. 李 교수팀은 실제로 이 전략을 이용하여 최근 용도가 다양한 숙신산을 고효율로 생산하는 미생물과 고수율의 아미노산 (발린, 쓰레오닌) 생산균주, 바이오부탄올 생산균주 등을 개발한 바 있다. <용어설명> 1) 가상세포: 세포내에서 일어나는 모든 효소 반응을 컴퓨터에서 재구성하여 실제 세포처럼 반응 시켜 결과를 예측하는 시스템을 말한다. 2) 대사공학: 세포의 대사 및 조절 회로를 체계적으로 조작하여 원하는 생산물을 고효율로 생산할 수 있도록 만드는 기술을 말한다. 3) 오믹스 (omics): 세포 또는 개체 내에서 발현되는 단백체(proteome), 전사체(transcriptome), 대사체(metabolome), 흐름체(fluxome) 등 생명현상과 관련된 중요한 물질에 대한 대량의 정보를 획득하여 이를 생물정보학 기법으로 분석하여 전체적인 생명현상을 밝히려는 학문이다4) 시스템 생물학 (systems biology): 각종 오믹스(transcriptome, proteome, fluxome, metabolome) 데이터를 융합하고 전산 생물학 기법으로 해석하여 세포의 생리 상태를 다차원에서 규명함으로써 세포와 생명체 전체를 이해하고자 하는 학문이며, 이 플랫폼을 기반으로 유용한 미생물의 개발이 가능하다.
2008.07.24
조회수 23088
양경훈교수팀, 양자효과를 이용한 초고속 IC 세계최초 개발
- 동일 성능 기존 IC 대비 75%의 소비전력 절감 효과 - KAIST(총장 서남표) 전자전산학과 양경훈(梁景熏, 46) 교수팀은 교육과학기술부 21세기프론티어연구개발사업 중 테라급나노소자개발사업(단장 이조원)의 지원을 받아, 양자 효과 소자인 공명 터널 다이오드(RTD : Resonant Tunneling Diode)를 이용하여, 초고속 통신 시스템의 핵심 부품인 40 Gb/s 급 멀티플렉서 집적회로 개발에 성공했다고 밝혔다. 상온에서 동작하고 기존 소자와 호환이 가능한 공명 터널 다이오드에 2 ㎛ 급 소자 공정기술을 적용해 자체 개발한 이 집적회로는 세계최초로 양자 효과를 이용한 초고속 멀티플렉서로서 나노 전자소자 기술의 실용화 가능성을 제시한 것으로 평가된다. CMOS, HBT 및 HEMT 등의 전자소자를 이용한 집적회로는 차세대 40 Gb/s 급 이상 통신 시스템의 핵심부품으로 널리 사용되어 왔으나 과도한 전력소모의 문제점으로 인하여 소비전력의 절감이 필수적으로 요구되어 왔다. 연구팀은 디지털 신호를 자체적으로 저장하고 빠른 신호처리가 가능한 공명 터널 다이오드 고유의 부성 미분 저항 특성(NDR : Negative Differential Resistance)을 이용하여, 세계적 반도체 제조기업인 인피니언(Infineon)에서 0.12 ㎛ CMOS 공정 기술을 바탕으로 개발한 40 Gb/s 멀티플렉서(소자 수 42개, 전력소모 100 mW)보다 소자 수는 1/2 이하(19개)로 줄이고 전력소모 또한 1/4(22.5 mW)로 줄이면서 40 Gb/s급 이상에서 동작하는 저전력/초고속 멀티플렉서 집적회로를 개발하였다. 이번 연구에서 개발된 양자 소자를 이용한 회로 설계 기술은 멀티플렉서 이외에, 차세대 초고속 통신 시스템 용의 다양한 디지털 및 아날로그 집적 회로 개발에 응용이 가능한 원천 기술이다. 또한 기존의 HBT, HEMT 등 화합물 반도체 소자 기반 초고속 집적회로의 공정설비를 그대로 이용할 수 있기 때문에 대량생산이 가능하여 향후 차세대 나노/양자 소자 시장을 선도할 수 있는 기술로 기대된다. 이번 연구결과는 5월 26일 프랑스 파리에서 열린 IEEE IPRM 국제학술대회에 발표되었으며 오는 8월 18일, 미국 알링턴에서 열리는 세계적 나노기술 학회인 “IEEE 나노테크놀로지(IEEE International Conference on Nanotechnology)” 학회에서 발표될 예정이다. 이밖에 8월 27일(수) “NANO KOREA 2008”에서도 초청 발표될 예정이다.
2008.06.26
조회수 20736
KAIST, 바이오에너지-바이오석유화학 물질 생산 대사공학 심포지움 개최
- 오는 20일 오후1시, 교내 정문술빌딩 드림홀에서- 바이오에너지와 바이오석유화학물질 생산을 위해 필수적 으로 요구되는 대사공학의 최신 전략과 방향 제시우리학교는 오는 20일, BK21 화학공학사업단(단장 박승빈 교수)과 바이오융합연구소(소장 김선창 교수, 공동소장 이상엽 특훈교수)에서 바이오에너지와 바이오석유화학물질의 효율적인 생산을 위한 핵심 대사공학 전략과 실사례 발표행사인 대사공학 심포지움를 개최한다고 밝혔다. 유가가 배럴당 125불을 상회하고, 환경문제, 그리고 바이오연료의 대량생산에 의한 곡물가 폭등 등이 국제적으로 이슈화가 되고 있는 지금 바이오매스로부터 화학물질을 생산하는 바이오리파이너리 프로그램과 바이오에너지를 생산하고자 하는 노력이 전 세계적으로 경주되고 있다. 한국생물공학회 대사공학분과위원회와 교육과학기술부 게놈정보 활용 통합 생물공정개발사업단이 주관하는 이번 심포지움에서는 재생 가능한 바이오매스로부터 에너지와 화학물질을 생산하는 바이오리파이너리 및 바이오에너지 연구 관련 전문가들의 발표가 있을 예정이다. 또한, 이러한 연구와 개발을 가능하게 하는 핵심 기술에 대한 강의도 준비 되었다. 특히, 게놈수준에서의 대사회로의 분석에 관한 세계적 전문가인 버나드 폴슨교수(캘리포니아대학, 샌디애고)의 주제 강연이 있다. 이어서 6명의 관련 국내 전문가들(아주대 박명준 교수, 울산대 홍순호 교수, 부산대 이선구 교수, 한국생명공학연구원 곽상수 박사, 경상대 김선원, 고려대 김경헌 교수)의 강의가 있다. 이번 심포지움은 바이오에너지와 바이오석유화학물질 생산을 위해 필수적으로 요구되는 대사공학의 최신 전략과 방향을 파악할 수 있는 좋은 기회가 될 것으로 보인다.
2008.05.15
조회수 23380
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9