-
KAIST-(주)포스코기술투자-(사)한국과학기술정책연구회 MOU 체결
우리 대학은 혁신 미래 산업 발전과 유망 신기술 발굴을 위해 ㈜포스코기술투자(대표 임승규), (사)한국과학기술정책연구회(회장 윤광준)와 전략적 업무협약(MOU)을 체결했다.
업무협약 체결식은 24일 오후 KAIST 대전 본원 제1 회의실에서 개최됐다. 이번 협약을 계기로 세 기관은 미래 산업 및 유망 신기술 발굴 협력 네트워크를 구축하는 일에 뜻을 모은다. 우리 대학은 교원창업·학생창업·출자 및 연구소기업·기업회원제 기업·기술이전 기업 중 공공 연구 성과를 활용한 창업 기업을 발굴하고 포스코기술투자는 이에 대한 투자 검토 및 집행 등의 방식으로 협력한다. 또한, 한국과학기술정책연구회와 함께 미래 산업을 위한 신기술 발굴 및 창업 활성화를 위해 국회와 정부에 의견을 전달하고 입법 지원을 위해 힘쓸 예정이다.
임승규 포스코기술투자 대표는 "KAIST의 공공 연구성과를 활용한 창업 분야에 투자하는 이번 협약을 계기로 포스코 그룹이 국내·외 전략적 파트너십 네트워크를 강화할 수 있을 것으로 기대하고 있다ˮ라고 말했다.
윤광준 한국과학기술정책연구회 회장은 "두 기관이 국가의 첨단기술의 사업을 개척하는 길에 꼭 필요한 규제 개혁 및 사이버 기술보안 정책 연구 등의 분야에서 한국과학기술정책연구회가 적극적으로 협력하겠다ˮ라고 밝혔다.
이광형 KAIST 총장은 "세계적인 연구성과를 확보하고 있는 KAIST가 포스코기술투자를 매개로 철강·이차전지 등의 소재 분야 및 수소 등의 친환경 에너지 분야의 선도 기업인 포스코그룹과 긴밀하게 협력해 글로벌 기술가치 창출이라는 시너지를 낼 수 있도록 지원을 아끼지 않겠다ˮ라고 강조했다. 한편, 24일 진행된 MOU 체결식에는 이광형 KAIST 총장, 임승규 포스코기술투자 대표, 윤광준 한국과학기술정책연구회 회장 및 세 기관 관계자들이 참석했다.
2021.06.28
조회수 14117
-
양자 입자를 이용한 신개념 레이저 개발
우리 대학 물리학과 조용훈 교수 연구팀이 머리카락 굵기보다 100배 얇은 정육각형 모양의 반도체 막대 구조 안에서 상호작용이 높은 양자 입자를 생성해, 손실이 커질수록 발광 성능이 좋아지는 신개념의 시공간 대칭성 레이저를 개발하는 데 성공했다고 11일 밝혔다.
이번 연구를 통해 개발된 시공간 대칭성 레이저는 향후 고효율의 레이저 소자부터 양자 광소자에 이르기까지 광범위하게 활용할 수 있을 것으로 기대된다.
어떠한 물리 시스템에서든 손실(loss)은 가능한 제거 하거나 극복해야 하는 대상으로 존재해왔다. 따라서, 이득(gain)이 필요한 레이저 시스템에서 손실이 있는 경우에는 작동에 필요한 최소 에너지(문턱 에너지)가 그만큼 증가하게 되므로 손실은 가능한 줄여야 하는 대상이었다.
하지만 양자역학에서 존재하는 시공간 대칭성(parity-time reversal symmetry) 및 붕괴 개념을 수학적인 유사성을 통해 광학 시스템에 적용하게 되면, 오히려 손실을 작동에 유익한 방향으로 이용할 수 있는 독특한 광학적 시스템이 탄생하게 된다.
기본적으로 빛은 서로 간의 상호작용이 존재하지 않기 때문에, 기존에는 빛을 이용한 시공간 대칭성을 갖는 광학 시스템을 구현하기 위해서 공간적으로 분리된 두 개 이상의 광학적 단위구조를 오차 없이 동일하게 제작해야 하고 이러한 단위구조들에 대하여 손실과 이득을 각각 개별적으로 조절해야 하는 까다로운 조건의 광학적 시스템을 이용해야만 했다.
한편, 빛은 반도체 내부의 엑시톤(전자-정공이 결합된 입자)과 오랜 시간 동안 머물면서 강하게 상호작용할 수 있는 적절한 조건이 성립되면, 엑시톤과 빛의 특징을 동시에 갖는 폴라리톤(엑시톤-폴라리톤)이라는 제3의 양자 입자를 생성할 수 있는데 엑시톤이 갖는 물질적인 성질로 인해 폴라리톤 사이의 상호작용이 커지게 된다. 특히, 질화물 반도체 기반의 정육각형 마이크로 공진기 구조를 이용하면 거울 없이도 내부 전반사의 원리를 통해 자발적으로 형성되는 빛의 모드와 엑시톤의 강한 상호작용으로 폴라리톤을 상온에서도 구현할 수 있다.
조용훈 교수 연구팀은 빛과는 달리 상호작용이 높은 폴라리톤을 이용해 단 한 개의 정육각형 마이크로 공진기 안에 존재하는 서로 다른 모드 사이의 상호작용을 직접적으로 제어할 수 있는 독자적인 방법을 고안했다.
육각 대칭성을 갖는 단일 공진기 내부에는 에너지가 동일하면서 정삼각형 및 역삼각형 형태의 경로를 갖는 두 개의 빛의 모드가 상호작용 없이 존재하게 되는데, 빛 대신 폴라리톤을 이용하면 엑시톤을 매개로 하여 두 개의 모드 사이에 직접적인 상호작용이 가능할 것이라는 점에 연구팀은 착안했다.
이 중 역삼각형 모드에 대해서만 손실 크기를 연속적으로 조절할 수 있도록 나비넥타이 모양으로 홈이 파여진 기판과 결합했는데, 이를 통해 손실이 증가할수록 작동에 필요한 에너지가 도리어 더 작아진다는 특이한 결과를 상온에서 관측하고 그 원인을 체계적으로 규명했다.
이는 일반적으로 손실이 클수록 작동에 필요한 에너지가 증가한다는 일반적인 직관과는 상반되는 결과로서, 기존에 빛을 이용한 시공간 대칭성 시스템의 복잡성과 한계를 극복하고 단 하나의 반도체 마이크로 공진기를 이용해 시공간 대칭성 레이저를 최초로 구현했다는 데 의미가 크다.
이와 같은 시공간 대칭성을 적용한 시스템은 제거하거나 극복해야 하는 대상이었던 손실을 오히려 이용해서 결과적으로 이득이 될 수 있게 해 주는 중요한 플랫폼이다. 이 플랫폼을 이용해서 레이저 발진 에너지를 낮추거나, 비선형 광소자 및 민감한 광센서 같은 고전적인 광소자뿐만 아니라 빛의 방향성을 제어할 수 있는 비가역적인 소자, 그리고 초유체 기반의 집적회로 양자 광소자에 응용될 수 있다.
연구를 주도한 조용훈 교수는 “폴라리톤이라는 양자 입자를 이용한 신개념 단일 마이크로 공진기 플랫폼으로서 복잡한 저온 장치 없이 시공간 대칭성과 관련된 기초연구의 문턱을 낮출 수 있는 기반이 될 것”이라며, “지속적인 연구를 통해 상온에서 작동할 수 있으면서도 손실을 이용한 다양한 양자 광소자로 활용되길 기대한다”라고 말했다.
물리학과 송현규 박사가 제1 저자로 참여한 이번 연구 결과는 삼성 미래기술육성사업과 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐으며, 포토닉스 분야의 세계적 학술지인 `네이처 포토닉스(Nature Photonics)' 6월 10일 字에 온라인 출간됐다. (논문명: Room-temperature polaritonic non-Hermitian system with single microcavity / 단일 마이크로 공진기를 이용한 상온 폴라리톤 non-Hermitian 시스템)
2021.06.11
조회수 66774
-
2021 리서치 데이 개최
우리 대학이 25일 대전 본원 학술문화관(E9) 정근모 콘퍼런스홀에서 ʻ2021 KAIST 리서치데이(Research Day)ʼ를 개최했다.
'KAIST 리서치데이'는 주요 연구 성과를 소개하고 R&D 분야의 정보 교류 기회를 제공하는 교내 연구 행사다. 상호 협력하고 소통하는 연구 문화를 조성해 연구자들의 응집력을 높이고 융합연구를 활성화하려는 취지로 마련되었다. 2016년 첫 행사가 시작되어 코로나 19의 영향을 받아 축소 시행한 지난해를 포함해 매년 개최하고 있다. 이날 행사에서는 연구 부문 우수 교원 및 대표 연구성과 10선에 선정된 연구자들을 포상했다. 최고 연구상인 연구대상은 김문철 교수(전기및전자공학부)가 수상해 5백만 원의 상금을 받는다. 기계학습 및 딥러닝 기반 영상 처리·컴퓨터 비전 및 영상 압축 분야에서의 독창적 성과를 인정받았다.
김 교수는 이날 수상을 기념해 ʻ고품질 영상 획득을 위한 딥러닝을 통한 계산영상학ʼ을 주제로 강연했다. 인공지능의 발전이 저품질 영상 콘텐츠를 고품질 영상 콘텐츠로 변환하는 응용 분야에서도 매우 탁월한 성능을 발휘한다는 점에 주목해 영상 복원 및 화질 향상 분야에 적용되고 있는 인공지능 기술의 현황을 소개했다.
이 밖에도 신의철 교수(의과학대학원)와 박인철 교수(전기및전자공학부)가 각각 연구상을 받았고 이노베이션상 수상자로는 노준용 교수(문화기술대학원)가 선정됐다. 또한, 윤동기 교수(화학과)와 김형수 교수(기계공학과)는 공동 연구 성과를 인정받아 한 팀으로 융합 연구상을 받았다.
이들 수상자 역시 다채로운 온라인 강연을 통해 학부생 및 대학원 학생은 물론 동료 연구자들에게도 연구에 대한 열정과 경험을 전달했다.
한편, KAIST를 대표하는 R&D 연구성과 10선에는 ▴희토류-백금 합금 나노입자 촉매 연구(유룡 교수·화학과) ▴분자 내 모든 원자들이 움직이는 위치를 실시간 관측(이효철 교수·화학과) ▴별아교세포의 시냅스 제거에 따른 기억력 유지 기전 규명(정원석 교수·생명과학과) 등이 자연과학 및 생명과학 분야의 우수 연구성과로 선정됐다.공학 분야에서는 ▴세계 최고 보행속도와 기능성을 갖는 하반신마비 장애인용 웨어러블 로봇(공경철 교수·기계공학과) ▴공정한 기계학습(서창호 교수·전기및전자공학부) ▴GANPU*: 생성적 적대 신경망을 위한 온 디바이스 학습 프로세서(유회준 교수·전기및전자공학부)가 선정됐다. ☞ GANPU: 단일-심층 신경망뿐만 아니라 생성적 적대 신경망과 같은 다중-심층 신경망을 처리하면서 모바일에서도 학습이 가능한 AI 반도체
이와 함께,▴종양 후성유전학적 리프로그래밍 기술 개발(김필남 교수·바이오및뇌공학과) ▴역노화 원천기술 개발(조광현 교수·바이오및뇌공학과) ▴대기 오염 물질 정화를 위한 불균일계 금속 원자 촉매(이현주 교수·생명화학공학과) ▴감염병원 서비스를 위한 이동 확장형 음압 병동(남택진 교수·산업디자인학과) 등도 연구성과 10선에 포함돼 동영상으로 소개됐다. 이날 열린 KAIST 리서치데이 행사는 코로나19의 확산 예방을 위해 수상자만 행사 현장에 참석하고 강연 등의 부대 행사는 온라인을 통해 진행하는 이원 생중계 방식으로 치러졌다.
2021.05.25
조회수 58256
-
KAIST 기반 대전-세종 첨단산업생태계 조성 심포지엄 개최
우리 대학이 21일 대전 본원 제1 회의실에서 ʻKAIST 기반 대전-세종 첨단산업생태계 조성 심포지엄ʼ을 개최했다. 이광재 더불어민주당 K-뉴딜 총괄본부장과 공동으로 개최한 이번 심포지엄은 대전-세종 일대를 한국판 실리콘밸리로 조성하겠다는 의지를 담아 마련됐다.
이광형 총장과 이광재 의원은 지난 3월 국회 의원회관에서 조승래(대전 유성구갑)·강준현(세종특별자치시을) 더불어민주당 의원이 배석한 가운데 대전과 세종의 상생 발전 방안에 관해 의견을 나눈 바 있다.
이날 심포지엄에서는 지난 3월 진행된 간담회의 내용을 발전시켜 우리 대학의 우수한 인재 양성 및 기업지원 프로그램을 바탕으로 대전과 세종을 잇는 첨단산업생태계를 조성하는 방안을 논의했다.이번 심포지엄을 공동 주최한 이광재 의원은 "과학수도 대전과 행정수도 세종을 연결하는 한국형 실리콘밸리를 만들자"며 "KAIST가 그 핵심엔진이 되어야 한다"고 강조했다. 또한, 이 의원은 기조발제를 통해 KAIST 연계 연구중심병원 설립 통한 `의사과학자' 양성 필요성, 창업+교육+돌봄+건강+문화 기능이 결합된 주거공급 위한 캠퍼스 고밀개발(高密開發) 등을 제안하겠다고 밝혔다.이어, 이상엽 연구부총장이 K-NEST* 프로젝트를 발제했다.(☞NEST*: New strategy for Ecosystem engineering for Startup and Technology transfer를 의미)
우리 대학이 대덕특구 50주년 재창조 사업에 핵심 동력을 제공하고, 스타트업파크 및 대전-세종 랜드마크 공간을 조성하는 지역 협력과 AI, 에너지, 바이오, ESG, 소재·부품·장비 등 분야 초격차를 통한 혁신 성장을 바탕으로 대전-세종을 잇는 첨단산업 혁신성장 생태계를 만들겠다는 구상이다.
일명, 혁신 둥지 전략이라고 이름 붙인 이 프로젝트는 ▴대규모 지역 벤처펀드 조성 ▴국내·외 우수 벤처 투자자에게 창업 투자와 혁신 생태계 구축에 관한 권한 및 책임 부여 ▴창업+주거+교육+문화가 단일 공간에서 어우러지는 새로운 스타트업 문화 정착 등을 주요 실행 방안으로 삼았다.또한, 이 부총장은 의학·공학·과학의 융합 교육을 추구하는 과학기술 의과학 전문대학원 설립 방안도 소개했다. 의학, 임상의학, 임상실습, 융합의·공학 교육 및 4년 간의 박사과정을 모두 거친 MD-Ph.D를 완성하는 과기의전원으로 K-NEST 프로젝트의 바이오-메디컬 전략이다.
융합과학자이자 의사이며 혁신 창업가의 역할을 수행할 인재를 양성하고, 대전ㆍ세종 등 지역병원과의 협력 체계를 구축하여 정밀 의학 AI 연구·개인 맞춤형 신약·첨단 치료 기기 등 글로벌 의료시장 창출형 R&BD로 새로운 시장을 개척하는 목표를 제시했다.
세 번째 발표자인 조상호 세종시 경제 부시장은 ʻ글로벌 시장에서 경쟁하는 스마트 행정수도ʼ를 주제로 시의 혁신 인프라와 7대 전략 사업을 소개했다. 또한, 교육부 지자체-대학 협력 기반 지역 혁신 산업 및 리서치 트라이앵글 파크 등의 적용 사례 등을 설명했다. 이어, 김명수 대전시 과학부시장은 ʻ대전, 기술창업 허브도시를 만들다ʼ라는 주제로 대전 스타트업 파크·기술창업 거점 D-브릿지(Bridge)·5대 권역 스타트업 타운·대전형 뉴딜 펀드·대전 팁스타운·맞춤형 대전드림타운 등 현재 주력하고 있는 중점 사업들의 추진 현황을 공유했다. 이와 함께, 글로벌 바이오헬스 국가 혁신 비전을 대전에서 완성하는 ʻK-바이오 랩허브ʼ 사업을 제안했다. 대전시는 전국에서 유일한 바이오메디컬 규제 자유 특구이자 45개 연구 기관 및 295개 연구소 기업을 가진 국내 최대의 바이오 원천기술 공급지다.
김 부시장은 바이오 혁신 생태계 구축에 필요한 세계적인 연구개발 인프라를 보유한 최적의 도시가 대전이라는 점을 강조하며 K-이노베이션에서 글로벌 이노베이션으로 도약하는 출발지가 될 것이라고 자신했다.마지막 발표자인 나용길 세종 충남대 병원장은 ʻ중부권 병원 바이오헬스케어 산업화 기반 대전-세종 첨단산업생태계 조성 협력방안ʼ을 설명했다. 산·학·연·병이 클러스터를 이뤄 바이오 헬스케어 산업을 육성하는 ʻ중부권 광역 바이오 헬스케어 클러스터ʼ에 관한 구상을 소개하고 바이오 헬스케어 사이언스 파크(Bio-Healthcare Science Park) 조성안을 향후 과제로 제시했다.
▴4차 산업혁명 핵심기술 기반 의약품·의료기기 공동 연구개발 ▴수요자 중심의 창의적 융합연구(병원 중심의 R&D 확대) ▴병원 내 지식재산창출 및 창업 활성화 및 제3의 수익창출 효과 등이 헬스케어 사이언스 파크의 지향점이다.
우리 대학을 기반으로 대전과 세종을 잇는 첨단 창업생태계가 조성될 경우 신산업 및 일자리 창출을 통해 지역과 국가의 경제 성장을 견인하는 동력을 마련할 수 있을 것으로 기대된다.
이광형 총장은 "KAIST가 지방자치와 연계하여 기술 가치를 창출하고 지역 발전에 적극 앞장서겠다ˮ라고 강조하며, "개방형 협력의 구심점으로서 지자체 및 국회와 적극 협력하여 기술 창업과 국가 산업 성장을 선도하겠다ˮ라고 밝혔다.한편, 이날 심포지엄에는 ·조승래(대전 유성구갑) 의원과 허태정 대전시장·이춘희 세종시장이 참석해 축사하고 지역 상생 방안을 함께 논의했다.
2021.05.24
조회수 28589
-
디스플레이 구동 가능한 OLED 전자 섬유 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 정보 출력이 가능한 유기발광다이오드(OLED) 전자 섬유를 개발했다고 12일 밝혔다.
전자 섬유는 실제 입을 수 있는 형태의 소자로서 기존 2차원 평면 소자와는 다르게 인체의 다양한 움직임에 순응하고 뛰어난 착용성과 휴대성을 제공할 수 있는 섬유의 1차원 구조 덕분에 차세대 폼 팩터(form-factor)로 주목받고 있다. 특히나 빛을 방출하는 전자 섬유는 패션, 기능성 의류, 의료, 안전, 차량 디자인 등 다양한 응용 잠재력에 많은 주목을 받고 있다.
하지만 지금까지의 발광 전자 섬유 연구는 디스플레이로 활용되기엔 부족한 전기광학적 성능을 보여 왔거나 단순히 소자 단위로만 연구가 진행 또는 종횡비가 긴 2차원 평면 단위에서 연구가 이루어져 응용 기술 개발에 어려움이 있었다.
최경철 교수 연구팀은 OLED 전자 섬유 디스플레이 구현을 위해 높은 전기광학적 성능 구현과 함께 주소 지정 체계 구축에 주목했다. 연구팀은 먼저 300 마이크로미터(µm) 직경의 원통형 섬유 구조에 적합한 RGB 인광 OLED 소자 구조를 설계했고 연구팀이 보유한 원천기술인 딥 코팅 공정을 활용해 평면 OLED 소자에 버금가는 수준의 OLED 전자 섬유를 개발했다.
특히 고효율을 얻을 수 있는 인광 OLED를 섬유에 성공적으로 구현해 최고 1만 cd/m2(칸델라/제곱미터) 수준의 휘도, 60 cd/A(칸델라/암페어) 수준의 높은 전류 효율을 보였다. (이는 기존 기술 대비 약 5배 이상의 전류 효율에 해당하는 수치다.)
연구팀은 아울러 OLED 전자 섬유를 기반으로 안정적인 디스플레이 구동을 위해, OLED 전자 섬유 위에 접촉 영역을 설계해 직조된 주소 지정 체계를 구축했다. 그리고 문자와 같은 정보를 디스플레이 해 실제 입을 수 있는 기능성을 확인했다.
최 교수 연구팀 관계자는 이 전자 섬유가 디스플레이라는 표시 장치 관점에서 반드시 요구되는 밝은 밝기와 낮은 전력 소모를 위한 높은 전류 효율, 낮은 구동 전압, 그리고 주소 지정성을 갖췄다고 밝혔다.
이번 연구를 주도한 최 교수 연구팀의 황용하 박사과정은 "섬유 기반 디스플레이 구현을 위해 필수적으로 요구되는 요소 기술들을 구현하는 데 집중했다ˮ며 "전자 섬유가 가진 뛰어난 착용성과 휴대성을 제공함과 동시에 디스플레이 기능성을 구현해 패션, 기능성 의류 등 다양한 응용 분야에 적할 수 있을 것이라 기대된다ˮ고 말했다.
최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도한 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' (피인용지수(IF) 16.836) 2월 4일 字로 온라인 게재됐으며, 5월 3일 字로 전면 표지 논문(Front Cover)으로 게재됐다. (논문명: Bright-Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Light-Emitting Fibers: Toward Wearable Textile Information Displays)
한편, 이번 연구는 산업통상자원부 전자부품산업핵심기술개발사업과 LG디스플레이의 지원을 받아 수행됐다.
2021.05.12
조회수 51526
-
이광형 제17대 총장 취임식 개최
우리 대학 이광형 제17대 총장이 8일 오후 2시 대전 본원 대강당(에서 취임식을 갖고 미래 50년을 위한 KAIST 신문화 조성을 위해 학교의 모든 역량을 모아달라고 구성원들에게 당부했다. 이 총장의 이날 취임식은 KAIST 공식 유튜브 채널을 통해 온라인으로 실시간 중계됐다.
이광형 총장은 이날 취임식에서 "KAIST는 앞으로 인류가 당면한 문제를 찾아 정의하고 해결하는 것에 중점을 두고, 인류의 지속 가능한 발전과 대한민국의 번영을 위한 글로벌 가치창출에 집중해야 한다ˮ며 포스트 인공지능(Post AI) 시대에 대비해 ʻ미래 50년을 위한 KAIST 신문화 전략ʼ을 새 비전으로 제시했다. 이 총장은 또 "그동안 섬기는 리더십으로 동료들과 함께 꿈을 현실로 구현하는 일을 해왔다고 생각한다ˮ며 "이러한 경험을 바탕으로 KAIST에 새롭고 따뜻한 변화를 일으키겠다ˮ고 포부를 밝혔다.이 총장은 특히 취임사에서 ▴실력과 인성을 모두 겸비한 ʻ신뢰할 수 있는 인재 양성ʼ ▴정부와 민간 기부자의 숭고한 뜻에 부응하는 ʻ신뢰할 수 있는 재정 운영ʼ ▴과감한 권한 분산과 위임을 통해 자율·창의·책임 경영을 실현하는 ʻ신뢰 기반의 경영 혁신ʼ을 통해 KAIST라는 이름만 들어도 국민과 정부가 ʻ신뢰ʼ라는 단어를 가장 먼저 떠 올릴 수 있게 소통과 신뢰의 문화를 만들자고 당부했다. 이 총장이 취임식에서 밝힌 ʻ미래 50년을 위한 KAIST 신문화 전략ʼ 은 일명 ʻQAISTʼ로 불린다. Question(교육), Advanced research(연구), Internationalization(국제화), Start-up(기술사업화), Trust(신뢰) 등 다섯 가지 혁신전략의 머리글자를 따서 만든 약어다. 그동안 추구해 온 창의·도전·배려라는 C³ 정신을 기반으로 ʻ글로벌 가치창출 선도대학ʼ이라는 ʻKAIST 비전 2031ʼ을 계승하고 완성하겠다는 이 총장의 의지가 담겨있는 세부 전략이다. 이 총장이 제시한 신문화 전략 중 ▲첫째는 질문(Question)하는 글로벌 창의인재를 양성하는 교육 혁신이다. 이를 위해 이 총장은 ▴인문학을 포함해 학과 간 경계 없는 융합 교육 과정을 개발하는 교육 과정의 혁신 ▴문제 중심 교육(Problem Based Learning)·프로젝트 중심 교육(Project Based Learning)·AR/VR 등 실감기술 기반의 블랜디드 러닝(Blended Learning) 등 원격 교육이 가능한 가상 캠퍼스 네트워크 구축 등 교육방식 혁신을 주문했다. 이 밖의 세부 전략으로는 ▴교수진이 전공 서적 이외의 도서를 선정해 학생들과 함께 읽고 토론하는 ʻ1 랩 1 독서ʼ 운동 ▴외국인 교원 15%, 여성 교원 25%, 미래분야 교원 100명 추가 충원 등의 내용이 포함됐다. 이 총장은 ▲둘째, 남이 정의해놓은 문제의 답을 찾는 ʻHowʼ 방식의 연구에서 무엇을 연구해야 할지 스스로 정의하는 ʻWhatʼ의 방식으로 전환하는 연구혁신(Advanced Research) 방향을 제시했다.
▴연구 시스템의 3대 요소인 인력·조직·연구지원을 혁신해 창의적이고 도전적인 연구 몰입환경을 조성하는 ʻ지속 가능한 연구 인프라 구축ʼ ▴추격형 연구의 틀을 벗어나 미래연구에 두려움 없이 뛰어들 수 있게 만드는 ʻ창의적·도전적 연구지원 혁신ʼ ▴연구실마다 세계 최초의 것을 시도하는 분위기를 조성하는 ʻ1 랩 1 최초ʼ 운동 ▴의사 과학자·공학자 양성 프로그램 신설 및 공동연구 네트워크 플랫폼 병원을 구축하는 등 바이오⦁의료 산업에 연구역량을 집중하겠다는 것이 주요 내용이다.
▲세 번째로 내·외부의 국제화를 병행하는 국제화 혁신(Internationalization)을 주문했다. ▴언어를 포함한 문화적 장벽이 낮은 글로벌 캠퍼스 구축 ▴연구실마다 한 명 이상의 외국인 학생을 수용해 교육하는 ʻ1 랩 1 외국인 학생ʼ 운동 ▴보스턴·실리콘밸리 등 세계의 주요 연구거점 지역을 기반으로 교수·학생·연구원의 해외 파견은 물론 해외 우수 연구자들과의 공동연구, 기술사업화의 인큐베이션 허브로 활용하는 ʻ해외 국제캠퍼스 구축ʼ 의지를 밝혔다.
이밖에 ▴국제공동연구를 통한 위상 제고와 케냐·이집트·터키 등에 교육 및 연구 모델을 수출해 개발도상국의 과학기술발전에 기여 하는 KAIST 발전모델 확산 등도 언급했다.
이 총장은 마지막으로 ▲글로벌 가치를 창출하는 기술사업화(Start-up) 전략을 제시했다. 이를 위해 ▴기업가정신 교육 강화·산업 현장 및 해외 연수 적극 장려·교내 창업기업을 외부 자본 시장에 연결하는 등 다소 과하다고 평가될 정도로 파격적인 창업지원제도를 도입할 계획이다. 또 ▴연구실별로 최소 1개의 연구실 혹은 졸업생 창업을 권장하는 ʻ1 랩 1 벤처ʼ 운동 ▴KAIST를 중심으로 대전-오송-세종을 연결하는 혁신성장 생태계를 구축하는 스타트업 월드(Start-up World) 리노베이션 ▴인센티브 기반의 조직 관리로 역동적인 지식재산관리 체계를 구축해 10년 이내에 연간 1,000억 원의 기술료 수입 달성을 목표로 기술사업화 부서의 민영화를 추진할 계획임을 밝혔다.
한편 코로나19 방역 수칙을 준수하며 진행된 취임식에는 이원욱 국회 과방위원장과 신성철 前 총장을 포함해 바이오및뇌공학과 개설을 위해 지난 2001년과 2014년 두 차례에 걸쳐 발전기금을 기부한 정문술 前 미래산업 회장, 이 총장의 제자인 김정주 NXC 대표가 직접 참석해 축사했다.
또한, SBS 드라마 카이스트에서 이 총장을 모델로 한 ʻ괴짜 교수ʼ 캐릭터를 만들었던 송지나 작가와 제자인 김영달 아이디스 회장 등도 취임식에 참석, 취임 축하 인사를 전하는 한편 재학생·동문·교직원 등으로 구성된 50인의 온라인 참석자들이 신임 총장에게 바라는 메시지와 기대감을 화면을 통해 전달했다.
이광형 총장은 서울대학교와 KAIST에서 각각 산업공학 학사·석사 학위를, 프랑스 응용과학원(INSA) 리옹에서 전산학 석·박사 학위를 취득했다.
이 신임 총장은 1985년 KAIST 전산학과 교수로 임용된 후 지난 2월 18일 이사회에서 총장으로 선임되기 전까지 바이오및뇌공학과와 문술미래전략대학원 미래산업 초빙 석좌교수로 재직해왔다.
1990년대 전산학과 교수 시절 김정주(넥슨)·김영달(아이디스)·신승우(네오위즈)·김준환(올라웍스) 등 1세대 벤처 창업가들을 배출해‘KAIST 벤처 창업의 대부’로도 불리는 이광형 총장은 교학부총장을 비롯해 교무처장, 국제협력처장, 과학영재교육연구원장, 비전2031위원회 공동위원장 등 교내·외의 주요보직을 두루 거쳤다.
미국 스탠포드 연구소 및 일본 동경공대 초빙교수를 지낸 경력의 소유자인 이 총장은 퍼지지능시스템학회장, 한국생물정보학회장, (사)미래학회장, 국회사무처 과학기술정책연구회장, 미국 전기전자학회 산하 인공지능학회(IEEE Computational Intelligence Society) 한국분과 의장, 국회 국가미래전략최고위과정 책임교수로도 활동했다. 올 3월 현재 한국과학기술한림원과 한국공학한림원 정회원이다.
일찍부터 학문 간 융합에 눈을 뜬 이광형 총장은 2001년 바이오와 ICT 융합을 주장하며 바이오및뇌공학과를 설립하고 2009년에는 각각 지식재산대학원과 과학저널리즘대학원을, 그리고 2013년에는 우리나라 최초의 미래학 연구기관인 문술미래전략대학원 설립을 주도했다. 이광형 총장은 이 같은 관련 연구 분야 및 사회 전반에 걸친 다양한 공적을 인정받아 백암학술상(기술부문, 1990)을 시작으로 1999년에는 정보문화진흥상 국무총리상과 신지식인상을 비롯해 프랑스정부 훈장(Chevalier, 2003), 국가과학기술위원회 위원장상(2012), KAIST 발전공적상(2018), 대한민국 국민훈장 동백장(2016), 대한민국 녹조근정훈장(2020), 국회의장상(2020)을 수상했다.
2021.03.09
조회수 107096
-
탄소중립 인공 광합성 기술 개발
우리 대학 생명과학과 조병관 교수 연구팀이 기후변화의 주된 요인인 C1 가스(이산화탄소, 일산화탄소 등 탄소 1개로 구성된 가스)를 고부가가치 바이오 화학물질로 전환하는 기술을 개발했다고 9일 밝혔다.
조 교수 연구팀은 광 나노입자가 빛을 받으면 내놓는 전자를 미생물이 에너지원으로 이용할 수 있도록 고효율 광 나노입자가 표면에 부착된 미생물-광 나노입자 인공광합성 시스템을 개발했다. 이 기술은 빛을 유일한 에너지원으로 활용해 미생물이 C1 가스를 다양한 바이오 화학물질로 전환하는 친환경 C1 가스 리파이너리 기술로 정부가 선언한 2050 탄소중립 실현을 위한 다양한 응용 가능성을 제시한다.
생명과학과 진상락 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `미국국립과학원회보(Proceedings of National Academy of Science, PNAS)'에 2월 23일 字 온라인판에 게재됐다.(논문명: Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth)
아세토젠 미생물은 우드-융달 대사회로를 통해 C1 가스를 아세트산으로 전환할 수 있다. 이에 C1 가스로부터 바이오 화학물질 생산을 위한 바이오 촉매로 활용 가능성이 커 탄소 포집 및 활용 기술로 많은 주목을 받고 있다.
아세토젠 미생물은 C1 가스 대사를 위한 환원 에너지를 당이나 수소를 분해해 얻는다. 당이나 수소를 대체하기 위해 나노입자 크기의 개별 광전극 역할을 하는 광 나노입자를 미생물 표면에 부착시켜 빛에너지를 미생물로 전달시키면 당이나 수소 없이도 C1 가스를 활용할 수 있다.
기존기술은 광 나노입자를 생합성해 세포 표면에 부착시키는 방법으로 광 나노입자의 구조와 크기를 조절하기 어려워 C1 가스 대사 효율을 높이는 데 한계가 있었다. 이는 구조와 크기에 따라 광전도효과의 성능에 차이가 생기는 광 나노입자의 독특한 특성 때문이다.
이와 같은 한계를 극복하기 위해 연구팀은 구조와 크기가 균일하고 우수한 광전도효과를 나타내는 고효율 광 나노입자를 화학적 방법으로 합성하고, 산업적으로 활용 가능한 아세토젠 미생물 중 하나인 `클로스트리디움 오토에타노게놈(Clostridium autoethanogenum)'의 표면에 부착시켰다.
연구팀은 광 나노입자를 부착한 미생물이 C1 가스로부터 아세트산을 생산할 수 있음을 입증해 빛을 이용한 친환경 인공광합성 시스템을 구축하고 구축된 인공광합성 시스템 미생물의 전사체 분석(세포 내 모든 RNA를 분석해 유전자 발현 유무를 규명하는 기술)을 통해 광 나노입자로부터 생성된 전자가 미생물 내로 전달되기 위한 전자수용체를 규명했다.
연구를 주도한 조병관 교수는 "C1 가스 고정과정에서 사용되는 당 또는 수소를 친환경 빛에너지로 대체할 수 있고, 미생물 기반의 생합성 광 나노입자를 활용한 기존 인공광합성 시스템의 한계를 극복했다ˮ며 "고효율 광 나노입자를 사용해 인공광합성 효율을 증대시킬 수 있고, 광 나노입자로부터 생성된 전자를 효율적으로 수용할 수 있는 인공미생물 개발연구에 실마리를 제공했다ˮ 고 의의를 설명했다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업단 및 지능형바이오시스템 설계 및 합성연구단(글로벌프론티어사업)의 지원을 받아 수행됐다.
2021.03.09
조회수 100165
-
천 배 넘게 응축된 빛 관측 성공
우리 대학 전기및전자공학부 장민석 교수가 이끄는 국제 공동 연구팀이 그래핀 나노층 구조에 천 배 넘게 응축돼 가둬진 중적외선 파동의 이미지를 세계 최초로 얻어내 초미시 영역에서 전자기파의 거동을 관측했다고 2일 밝혔다.
연구팀은 수 나노미터 크기의 도파로에 초고도로 응축된 `그래핀 플라즈몬'을 이용했다. 그래핀 플라즈몬이란 나노 물질 그래핀의 자유 전자들이 전자기파와 결합해 집단으로 진동하는 현상을 말한다. 최근 이 플라즈몬들이 빛을 그래핀과 금속판 사이에 있는 아주 얇은 유전체에 가둬 새로운 모드를 만들 수 있다는 사실이 밝혀졌다.
이러한 그래핀-유전체-금속판 구조에서는, 그래핀의 전하들이 금속판에 영상 전하(image charge)를 만들게 되고 빛의 전기장에 의해 그래핀의 전자들이 힘을 받아 진동하게 되면 금속에 있는 영상 전하들도 잇따라 진동하게 된다. 이러한 새로운 형태의 그래핀-유전체-금속판에서의 집단적인 전자 진동 모드를 `어쿠스틱' 그래핀 플라즈몬(Acoustic Graphene Plasmon; 이하 AGP)이라고 한다.
하지만 AGP는 광학적 파동을 수 나노미터 정도의 얇은 구조에 응집시키기 때문에, 외부로 새어 나오는 전자기장의 세기가 매우 약하다. 이 때문에 지금까지 직접적인 광학적 검출 방법으로는 그 존재를 밝혀내지 못했으며 원거리장 적외선 분광학이나 광전류 매핑과 같은 간접적인 방법으로 AGP의 존재를 보일 수밖에 없었다.
이러한 한계점을 극복하기 위해, 국제 공동 연구팀은 새로운 실험 기법과 나노 공정 방법론을 제안했다. KAIST 전기및전자공학부의 장민석 교수와 메나브데 세르게이(Sergey Menabde) 박사 후 연구원은 민감도가 매우 높은 산란형 주사 근접장 광학현미경(s-SNOM)을 이용해 나노미터 단위의 도파로를 따라 진동하는 AGP를 세계 최초로 직접적으로 검출했고, 중적외선이 천 배 넘게 응축된 현상을 시각화했다. 해당 나노 구조들은 미국의 미네소타 대학(University of Minnesota)의 전자 및 컴퓨터 공학부의 오상현 교수팀이 제작했으며, 그래핀은 성균관대학교의 IBS 나노구조물리연구단(이하 CINAP) 이영희 연구단장팀이 합성했다.
연구팀은 AGP 에너지의 대부분이 그래핀 아래에 있는 유전체층에 집중된 상황에서도 AGP를 검출했는데, 이는 오상현 교수와 이인호 박사 후 연구원이 만든 고도로 반듯한 나노 도파로와 CINAP에서 합성한 순도 높은 대면적 그래핀 덕분에 플라즈몬이 보다 긴 거리를 전파할 수 있는 환경이 조성됐기 때문이다.
중적외선 영역의 전자기파는 다양한 분자들이 가지고 있는 진동 주파수와 일치하는 주파수를 가지고 있어 이들의 화학적, 물리적 성질을 연구하는데 막대한 비중을 차지한다. 예를 들어, 많은 중요한 유기 분자들이 중적외선 흡수 분광학으로 검출될 수 있다. 하지만 한 개의 분자와 빛 간의 상호작용은 매우 작아 성공적인 검출을 위해서는 분자의 개수가 많아야 한다. AGP는 초고도로 응축된 전자기장을 통해 분자와 빛의 상호작용을 크게 높일 수 있으며 결국 한 개의 분자로도 작동하는 단분자 검출 기술을 가능하게 한다.
또한, 일반적인 그래핀 플라즈몬 기반의 광학 장치들은 그래핀에서의 큰 에너지 흡수율 때문에 높은 성능을 보이기 어렵다. 반면 AGP의 전자기장은 대부분이 그래핀이 아닌 유전체층에 존재하기 때문에 그래핀에서 에너지 손실에 덜 민감하므로 고성능 소자 구현에 유리하다. 이번 연구 결과는 AGP가 중적외선 영역에서 작동하는 다른 그래핀 기반의 메타 표면, 광학적 스위치, 다양한 광전류 장치 등을 대체할 수 있을 것이라는 희망을 보여준다.
장민석 교수는 "이번 연구를 통해 어쿠스틱 그래핀 플라즈몬의 초고도로 응축된 전자기장을 근접장 측정을 통해 관측할 수 있었다.ˮ라며 "앞으로 강한 물질-빛 상호작용이 필요한 다른 상황에서도 어쿠스틱 그래핀 플라즈몬을 이용한 연구가 활발해지기를 기대한다ˮ라고 말했다.
메나브데 세르게이(Sergey Menabde) 박사와 이인호 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 2월 19일 字 게재됐다. (논문명: Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition).
한편 이번 연구는 삼성전자 미래기술육성센터 및 한국연구재단(NRF), 미국의 National Science Foundation(NSF), 삼성 글로벌 공동연구 프로그램(GRO), 기초과학연구원(IBS)의 지원으로 진행됐다.
2021.03.02
조회수 94886
-
인공지능으로 3차원 고해상도 나노입자 영상화 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀이 삼성전자 종합기술원과 공동연구를 통해 나노입자의 3차원 형상과 조성 분포의 복원 성능을 획기적으로 향상한 인공지능 기술을 개발했다고 16일 밝혔다. 공동연구팀은 에너지 분산형 X선 분광법(EDX)을 주사 투과전자현미경(STEM)과 결합한 시스템을 활용했다.
이번 연구를 통해 나노입자를 형성하고 있는 물질의 형상과 조성 분포를 정확하게 재구성함으로써, 실제 상용 디스플레이를 구성하는 양자점(퀀텀닷)과 같은 반도체 입자의 정확한 분석에 도움을 줄 것으로 기대된다.
예종철 교수 연구팀의 한요섭 박사, 차은주 박사과정, 정형진 석사과정과 삼성종합기술원의 이은하 전문연구원팀의 장재덕, 이준호 전문연구원이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)' 2월 8일 字 온라인판에 게재됐다. (논문명 : Deep learning STEM-EDX tomography of nanocrystals)
에너지 분산형 X선 분광법(이하 EDX)은 나노입자의 성분 분석에 주로 이용되며, X선과 반응한 물체의 성분에 따라 고유한 방출 스펙트럼을 보인다는 점에서 화학적인 분석이 가능하다. 퀀텀닷 및 배터리 등 다양한 나노 소재의 열화 메커니즘과 결함을 해석하기 위해 형상 및 조성 분포 분석이 가능한 이 분광법의 필요성과 중요도가 급증하고 있다.
그러나 EDX 측정 신호의 해상도를 향상하기 위해, 나노 소재를 오랜 시간 전자빔에 노출하면 소재의 영구적인 피해가 발생한다. 이로 인해 나노입자의 3차원 영상화를 위한 투사(projection) 데이터 획득 시간이 제한되며, 한 각도에서의 스캔 시간을 단축하거나 측정하는 각도를 줄이는 방식이 사용된다. 기존의 방식으로 획득된 투사 데이터를 이용해 3차원 영상을 복원할 시, 미량 존재하는 원자 신호의 측정이 불가능하거나 복원 영상의 정밀도와 해상도가 매우 낮다.
그러나 공동 연구팀이 자체 개발한 인공지능 기반의 커널 회귀(kernel regression)와 투사 데이터 향상(projection enhancement)은 정밀도와 해상도를 획기적으로 발전시켰다. 연구팀은 측정된 데이터의 분포를 네트워크가 스스로 학습하는 인공지능 기반의 커널 회귀를 통해 스캔 시간이 단축된 투사 데이터의 신호 대 잡음비(SNR)를 높인 데이터를 제공하는 네트워크를 개발했다. 그리고 개선된 고화질의 EDX 투사 데이터를 기반으로 기존의 방법으로는 불가능했던 적은 수의 투사 데이터로부터 더욱 정확한 3차원 복원 영상을 제공하는 데 성공했다.
연구팀이 개발한 알고리즘은 기존의 EDX 측정 신호 기반 3차원 재구성 기법과 비교해 나노입자를 형성하고 있는 원자의 형상과 경계를 뚜렷하게 구별했으며, 복원된 다양한 코어-쉘(core-shell) 구조의 퀀텀닷 3차원 영상이 샘플의 광학적 특성과 높은 상관관계를 나타내는 것이 확인됐다.
예종철 교수는 "연구에서 개발한 인공지능 기술을 통해 상용 디스플레이의 핵심 기반이 되는 퀀텀닷 및 반도체 소자의 양자 효율과 화학적 안정성을 더욱 정밀하게 분석할 수 있다ˮ고 말했다.
2021.02.16
조회수 85047
-
해상도 높인 초박형 4D 카메라 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 금속 나노 광 흡수층을 통해 고해상도 4D 영상 구현이 가능한 초박형 라이트필드 카메라를 개발했다고 4일 밝혔다.
`라이트필드 카메라'는 곤충의 시각 구조에서 발견되는 형태에 착안해 미세렌즈와 대물렌즈를 결합한 진보된 형태의 카메라다. 한 번의 2차원 촬영으로 빛의 공간 뿐만 아니라 방향까지 4차원 정보를 동시에 획득한다. 그러나 기존 라이트필드 카메라는 미세렌즈 배열의 *광학 크로스토크(Optical crosstalk)로 인한 해상도 저하와 대물렌즈의 위치로 인한 크기의 한계가 존재한다.
☞ 광학 크로스토크(Optical Crosstalk): 어떤 통신회선의 전기 신호가 다른 통신회선과 전자기적으로 결합해 혼선을 일으키는 통신 용어를 크로스토크라고 하며, 광학에서는 한 렌즈를 통과한 빛이 다른 렌즈로부터 들어온 빛과 겹쳐 생기는 현상으로 영상이 중첩되어 촬영되는 것을 의미한다.
연구팀이 개발한 `4D 카메라'는 나노 두께의 광 흡수 구조를 미세렌즈 배열(Microlens arrays) 사이에 삽입해 대비도 및 해상도를 높였으며, 기존의 카메라가 가지는 외부 광원, 추가 센서 부착의 한계를 극복할 수 있다. 이러한 특징을 이용해 의료영상, 생체인식, 모바일 카메라 또는 다양한 가상현실/증강현실 카메라 분야에 적용 가능할 것으로 기대된다.
연구팀은 미세렌즈 배열의 광학 크로스토크를 제거하기 위해 200나노미터(nm) 두께 수준의 금속-유전체-금속 박막으로 이루어진 광 흡수층을 렌즈 사이에 배치하고, 대물렌즈와 미세렌즈 사이의 간격을 일정 수준으로 줄여 초박형 라이트필드 카메라를 개발하는 데 성공했다.
높은 광학적 손실성과 낮은 분산성을 갖는 크로뮴(Cr) 금속과 높은 투과율을 갖는 유리층을 나노미터 두께로 적층한 구조(Cr–SiO2–Cr)는 가시광선 영역의 빛을 완전히 흡수할 수 있다. 나노 광 흡수층을 미세렌즈 배열 사이에 배치해 미세렌즈들 사이의 광학 크로스토크를 제거하고 고 대비 및 고해상도 3차원 영상을 획득하는 데 도움을 준다.
연구팀은 광 흡수 구조를 갖는 미세렌즈 배열을 포토리소그래피(Photolithography), 리프트 오프(Lift-off), 열 재유동(Thermal reflow) 공정을 통해 양산 제작했다. 또한, 라이트필드 카메라의 전체 두께를 최소화하기 위해 미세렌즈의 방향을 이미지센서 방향의 역방향으로 배치하고 대물렌즈와 미세렌즈 사이 거리를 2.1mm 수준으로 줄여, 전체 5.1mm의 두께를 갖는다. 이는 현재까지 개발된 라이트필드 카메라 중 가장 얇은 두께다.
나노 광 흡수 구조를 갖는 미세렌즈에 의해 이미지센서에 기록되는 원시 영상은 기존 미세렌즈를 통한 영상에 비해 높은 대비도와 해상도를 가지며, 연구팀은 이를 영상처리 기법을 통해 시점 영상 및 3차원 영상으로 재구성했을 때 향상된 정확도를 가짐을 확인했다.
정기훈 교수는 "초박형이면서 고해상도의 라이트필드 카메라를 제작하는 새로운 방법을 제시했다ˮ며 "이 카메라는 생체인식, 의료 내시경, 휴대폰 카메라와 같이 다시점(Multi-view), 재초점(Refocusing)을 요구하는 초소형 영상장치로 통합돼, 초소형 4D 카메라의 새로운 플랫폼으로 활용될 것ˮ이라고 말했다.
우리 대학 바이오및뇌공학과 배상인 박사과정이 주도한 이번 연구 결과는 국제 학술지 `어드밴스드 옵티컬 머티리얼즈(Advanced Optical Materials)'에 1월 20일 字 게재됐다. (논문명: High Contrast Ultrathin Light-field Camera using inverted Microlens arrays with Metal-Insulator-Metal Optical Absorber)
한편 이번 연구는 과학기술정보통신부의 개인연구지원사업, 산업 통산 자원부의 기술혁신프로그램, 보건복지부의 보건의료기술연구개발사업으로 수행됐다.
2021.02.04
조회수 82421
-
무선 충전 가능한 부드러운 뇌 이식 장치 개발
우리 연구진이 무선 충전 가능한 뇌 이식 장치를 개발했다. 이 장치는 이식 후 생체 내에서 장기간에 걸쳐 배터리 교체 없이 스마트폰을 이용해 빛으로 뇌의 신경회로를 정교하게 조절할 수 있다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 연세대 의대 김정훈 교수팀과 공동 연구를 통해 뇌 완전 이식형 무선 광유전학 기기를 개발했다고 26일 밝혔다.
이번 개발 기술은 장기간에 걸친 동물 실험이 필요한 뇌 기능 연구뿐 아니라 향후 인체에 적용돼 중독과 같은 정신질환 및 파킨슨병과 같은 퇴행성 뇌 질환 치료에도 적용될 수 있을 것으로 기대된다.
우리 대학 전기및전자공학부 김충연 박사과정, 연세대 의대 구민정 박사과정 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 22일 字에 게재됐다. (논문명 : Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics)
광유전학은 빛을 이용해 목표로 하는 특정 신경세포만을 선택적으로 정교하게 제어할 수 있다는 점에서, 뇌 기능을 밝히고 각종 뇌 질환을 치료할 해결책으로 뇌과학 및 신경과학 분야에서 주목받고 있다.
기존의 광유전학은 외부기기와 연결된 광섬유를 통해 신경세포에 빛을 전달하는 방법을 사용하고 있는데, 이러한 유선 방식은 동물의 자유로운 움직임을 크게 제한한다는 점에서 복잡한 동물 실험을 구현하는데 제약이 있다. 반면 최근에 개발된 무선 임플란트 기기들은 동물의 행동을 제약하지는 않지만, 주기적인 배터리의 교체가 필요하거나 외부 장비로부터 무선으로 전력을 공급받아야 하므로 독립적이지 못하고 동작이 안정적이지 못하다는 한계가 있다.
연구팀은 배터리의 무선 충전과 디바이스의 무선 제어를 가능하게 만드는 무선 회로를 개발해 마이크로 LED 기반의 탐침과 결합했다. 이를 통해 동물이 자유롭게 움직이는 상태에서도 배터리의 무선 충전이 가능하고, 스마트폰 앱을 통해 광자극을 무선으로 제어할 수 있는 무게 1.4그램(g)의 뇌 완전이식형 기기를 구현했다. 나아가 생체 이식 후 기기에 의해 주변의 조직이 손상되는 것을 방지하고자, 기기를 매우 부드러운 생체적합성 소재로 감싸 생체조직과 같이 부드러운 형태가 되도록 개발했다.
이번 연구를 주도한 정재웅 교수는 "개발된 장치는 체내 이식 상태에서 무선 충전이 가능하므로 배터리 교체를 위한 추가적인 수술 필요 없이 장기간 사용이 가능하다ˮ며 "이 기술은 뇌 이식용 기기뿐 아니라 인공 심박동기, 위 자극기 등 다양한 생체 이식용 기기에 범용적으로 적용될 수 있을 것이다ˮ고 말했다.
연구팀은 이 기기를 LED 탐침이 쥐의 뇌에 삽입된 상태에서 두피 안으로 완전히 이식하고 쥐가 자유롭게 움직이는 상태에서 배터리가 자동으로 무선 충전될 수 있음을 확인했다. 또한 연구팀은 중독성 약물인 코카인에 반복적으로 노출된 쥐의 특정 뇌 부위에 무선으로 빛을 전달해 코카인으로 인한 행동 민감화 발현을 억제함으로써 광유전학이 코카인에 의한 중독 행동 제어에 적용될 수 있음을 보였다.
아울러 공동연구자 연세대 의대 김정훈 교수는 "자유롭게 움직이는 동물을 바라보며, 단지 스마트폰 앱을 구동해 뇌에 빛을 전달하고, 그로 인해 동물의 특정 행동을 제어할 수 있다는 사실이 매우 흥미롭고, 많은 상상력을 자극한다ˮ라고 말했다.
연구팀은 이 기술을 궁극적으로 인체에 적용할 수 있도록 기기를 더욱 소형화하고 MRI 친화적인 디자인으로 발전시키는 확장 연구를 계획하고 있다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 기초연구실 지원사업과 신진연구자지원사업, KAIST 글로벌 특이점 연구사업의 지원을 받아 수행됐다.
2021.01.26
조회수 78717
-
초고감도 생체 분자 검출용 디지털 라만 분광 기술 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 생체 분자의 광학 검출의 기술적 장벽인 신호대잡음비를 1,000배 이상, 검출한계를 기존 대비 10억 배인 아토몰(10-18 mole) 단위까지 향상시키는 디지털 코드 *라만 분광 기술을 세계 최초로 개발했다고 15일 밝혔다.
☞ 라만 분광법(Raman spectroscopy): 특정 분자에 레이저를 쏘았을 때, 그 분자 전자의 에너지준위 차이만큼 에너지를 흡수하는 현상을 통해 분자의 종류를 알아내는 방법이다.
연구진은 통신 분야에서 잘 알려진 대역 확산기술(CDMA)을 생분자화합물의 라만 분광 검출법에 세계 최초로 적용했다. 디지털 코드화된 레이저광원을 이용해 모든 잡음신호를 제거하고, 생화합물의 고순도 라만 분광 신호를 복원함으로써, 극저농도의 생분자화합물을 형광 표지 없이 정확하게 분석했다. 이러한 디지털 코드 라만 분광 기술은 다양한 분자진단, 약물 및 암 치료 모니터링뿐 아니라 현장 진단용 광학 진단기기나 모바일 헬스케어 기기에도 활용이 가능할 것으로 크게 기대된다.
우리 대학 바이오및뇌공학과 이원경 박사과정이 제 1저자로 참여한 이번 연구는 세계적 권위의 과학전문지 `네이처(nature)'의 자매지인 `네이처 커뮤니케이션스(Nature Communications)'에 1월 8일 字 온라인판에 발표됐다. (논문명: Spread Spectrum SERS allows label-free detection of attomolar neurotransmitters)
알츠하이머병, 파킨슨병, 우울증 등의 뇌세포와 관련된 신경 질환은 뇌세포에서 만들어지는 신경전달물질이 적절히 분비되지 않거나 불균형으로 분비돼 발생하는 질병으로, 최근에는 발병과 직간접적인 사망자가 급증하고 있으나 치료가 쉽지 않다. 신경전달물질은 뉴런의 축색 돌기 말단에서 분비돼 시냅스 갭을 통과한 후 다른 뉴런에 신호를 전달하는 물질로, 결합하는 수용체의 화학적 성질에 따라 기능이 다르고, 발생하는 질병도 다양하다.
알츠하이머병 환자들은 신경전달물질 가운데 아세틸콜린이 부족하거나 글루탐산염이 높은 특징이 있고, 도파민이 부족하면 몸이 굳어지며 떨리는 파킨슨병에 걸리기 쉽고 조현병이나 주의력 결핍 과잉 행동장애와 같은 정신질환의 원인이 된다. 신경전달물질과 관련된 신경 질환은 특정 수용체 작용제나 수용체 길항체로 치료를 하는데, 효과는 그다지 성공적이지 않다. 따라서 알츠하이머병이나 파킨슨병과 같은 신경 질환의 조기 진단을 위해서 적절한 신경전달물질의 적절한 분비를 위한 지속적인 신경전달물질 농도 변화를 모니터링하는 것이 매우 중요하다.
극저농도의 신경전달물질을 간편하면서도 정확하게 측정할 수 있다면 신경계 질환의 조기 진단율을 크게 높일 수 있고 신경 질환 환자의 치료 추적 관리에 큰 도움을 줄 수 있다. 하지만 신경전달물질 기반의 기존 신경 질환 진단기술은 양전자 방출 단층촬영(PET), 표면증강라만분광(SERS), 고성능 액체 크로마토그래피(HPLC), 형광 표지 기반 센서로 측정해 분석하는 방식이다. 이러한 기존 신경 질환 진단기술은 검출한계가 나노몰(10-9 mole) 이상에 그치며, 시료 전처리 단계가 복잡하고 측정 시간이 오래 걸리는 한계가 있다.
연구팀은 문제 해결을 위해 대역확산 통신기술의 뛰어난 잡음 제거 기술을 생체 분자 검출에 적용해 레이저 출력 변동, 수신기 자체 잡음 등의 시스템 잡음과 표적 분자 이외의 분자 신호를 효율적으로 제거하고 표적 생체 분자 신호만 선택적으로 복원했다. 그 결과 생체 분자 신호의 신호대잡음비를 증가시켜 더욱 정밀한 검출한계를 달성했다.
대역확산 기반 디지털 코드 분광 기술은 직교성을 가지는 확산 코드로 암호화된 빛으로 생체 분자를 높은 에너지로 이동시켜 생체 분자에서 산란돼 나오는 빛을 다시 확산 코드로 복호화한다. 이러한 과정을 거쳐 표적 생체 분자의 산란 신호를 복원해 질병 및 건강 진단 지표, 유전 물질 검출 등에 응용할 수 있다.
또한 직교성을 가지는 확산 코드는 기존의 다른 신호처리 기술보다 잡음을 제거하는 성능이 우수해 신호대잡음비와 검출한계, 시간해상도를 최고 수준으로 끌어올릴 수 있다.
연구팀이 개발한 대역확산 라만 분광 기술은 물질의 고유진동 지문을 측정하는 성분 분석과 전처리가 필요하지 않다는 라만 분광 기술의 장점을 그대로 유지하면서 기존의 기술적 한계인 낮은 신호대잡음비와 검출한계를 극복하는 기술로, 바이오 이미징, 현미경, 바이오 마커 센서, 약물 모니터링, 암 조직 검사 등의 다양한 분야에 활용될 수 있다.
연구팀은 대역확산 분광 기술과 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목시켜 별도의 표지 없이도 5종의 신경전달물질을 아토 몰 농도에서 검출해 기존 검출한계를 10억(109)배 향상시켰으며, 신호대잡음비가 1,000배 이상 증가함을 확인했다.
제1 저자인 이원경 박사과정은 "고감도 분자 진단을 위해 통신 분야의 최첨단 기술인 대역확산 기술을 접목한 차세대 디지털 코드 라만 분광 기술을 최초로 제안했으며, 이 방법으로 기존 생체 분자 검출 기술의 장벽을 해결하고 기존 기술의 신경전달물질 검출한계를 획기적으로 향상시켰다ˮ며 "고감도 소형 분광기로 신속하고 간단하게 현장 진단이 가능하고 다양한 분야에 활용될 수 있어 파급효과가 크다ˮ고 말했다.
정기훈 교수는 "이번 결과를 바탕으로 향후 휴대용으로 소형화를 진행하면 낮은 비용으로 무표지 초고감도 생체 분자 분석 및 신속한 현장 진단이 가능해질 것이다ˮ며 "또한 신경전달물질뿐 아니라 다양한 생화합물 검출, 바이러스 검출, 신약평가분야에 크게 활용될수 있을 것이다ˮ고 말했다.
한편, 이번 연구는 한국연구재단 바이오기술개발사업, KAIST 코로나대응 과학기술뉴딜사업단과 범부처 전주기 의료기기 사업, 과학기술정보통신부 ETRI 연구개발지원사업의 지원을 받아 수행됐다.
2021.01.18
조회수 78783