-
맞춤형 종양 모델 구축 스페로이드 플랫폼 개발
세포들이 뭉쳐 생성된 구형 집합체인 스페로이드(spheroid)의 제작 기술은 현재 단일 조건의 스페로이드를 대규모로 생성하는 것까지는 가능하나, 체내 조직의 기능을 모사할 수 있는 최적의 크기 및 세포 조성 범위의 탐색이 어렵고, 다중 약물 스크리닝에 적합하지 않다는 문제가 있었다. 우리 연구진이 단 3번의 세포 주입으로 10가지 세포 조성을 갖는 100개의 스페로이드를 제작하고, 25가지 약물 조합을 동시에 처리할 수 있는 플랫폼을 구축하는 데 성공했다.
우리 대학 바이오및뇌공학과 박제균 교수 연구팀이 다양한 스페로이드 어레이(배열)를 맞춤형으로 손쉽게 제작하고 이를 구획화해 다중 시약 처리를 수행할 수 있는 조립형 마이크로어레이 플랫폼을 개발했다고 27일 밝혔다.
기존 단일 조건의 스페로이드를 대규모로 제작하는 방법은 다중 약물 스크리닝이 어렵고, 다중 약물 스크리닝이 가능한 방법은 대규모 제작이 어려워, 두 가지 장점을 동시에 만족하는 플랫폼이 개발되지 않은 실정이었다.
* 다중 약물 스크리닝: 암 치료의 식별 및 약물 안전성 평가를 위해 약물의 종류, 농도 등 다양한 실험 조건 변화에 따른 세포 및 조직의 반응을 평가하는 방법
연구팀은 조립식 플랫폼의 핵심기술인 행잉드롭 마이크로어레이*, 그래디언트(gradient) 블록**, 오목 기둥 마이크로어레이***를 개발하고, 이들의 조립 방식에 따라 달라지는 여러 가지 스페로이드 어레이 기반 종양 모델의 제작 방법과 분석 방법을 발표했다.
* 행잉드롭 마이크로어레이: 고드름과 같이 표면에 매달린 형태의 물방울을 의미하는 행잉드롭 내에 세포가 존재하면 중력에 의해 세포들이 응집되어 스페로이드가 만들어짐. 행잉드롭 마이크로어레이는 바닥 면에 구멍이 2차원으로 배열되어, 단 한 번의 세포 혼합용액 주입으로 행잉드롭을 어레이 형태로 형성할 수 있어, 균일한 스페로이드 어레이를 제작할 수 있음
** 그래디언트 블록: 경사면을 가지는 블록으로, 행잉드롭 마이크로어레이와 조립하게 되면 각각의 어레이 구멍에 가라앉는 세포의 수가 선형으로 변화하게 되어 이를 통해 크기가 규칙적으로 변화하는 스페로이드 어레이를 제작할 수 있음
***오목 기둥 마이크로어레이: 행잉드롭과 접촉하여 스페로이드를 기둥 상부에 안착시켜 회수할 수 있는 구조를 갖고 있어, 스페로이드 어레이를 개별적으로 분리하고 이동시킬 수 있음
연구팀은 10가지의 다른 세포 조성을 가지며, 조성 별로 10개의 스페로이드가 존재하는, 총 100개의 삼중 배양 스페로이드로 구성된 어레이를 단 세 번의 세포 혼합용액 주입으로 생성시키는데 성공했다.
또한 연구팀은 행잉드롭 마이크로어레이와 오목 기둥 마이크로어레이의 조립을 통해 대규모로 생성된 스페로이드를 작은물방울 형태로 각각 분리하고, 구획화된 행잉드롭 마이크로어레이로 옮겨 스페로이드 어레이를 구획화시키는 방법을 새롭게 선보였다. 이를 통해 스페로이드 어레이의 순차적 다중 시약 처리 및 일괄적 형광 염색이 가능하게 되어 스페로이드 분석 및 실험 과정이 획기적으로 개선됐다.
연구를 주도한 박제균 교수는 “이번 연구는 다양한 크기와 조성을 갖는 스페로이드 어레이를 대규모로 제작하고, 원하는 대로 이동시켜 일괄 또는 다중 시약 처리가 가능한 고효율 스크리닝 플랫폼의 개발 성과”임을 강조하며, “간단하면서도 우수한 편의성을 갖춘 플랫폼이기에, 향후 다른 연구자들도 스페로이드 및 오가노이드의 크기와 조성에 따른 변화 연구와 다양한 세포 조성으로 이루어진 복잡한 스페로이드, 오가노이드 어레이를 이용한 고효율 약물 스크리닝 등에 활용할 수 있을 것”이라고 말했다.
우리 대학 바이오및뇌공학과 김휘수 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 헬스케어 머티리얼즈(Advanced Healthcare Materials)’에 2024년 5월 30일 자로 온라인판에 게재됐다.(https://doi.org/10.1002/adhm.202400501. 논문명: Reconfigurable Hanging Drop Microarray Platform for On-demand Preparation and Analysis of Spheroid Array) 또한 상기 논문은 와일리-VCH(Wiley-VCH) 출판사의 “핫 토픽: 종양과 암(Hot Topic: Tumors and Cancer)” 세션에도 선정됐다.
한편 이번 연구는 한국연구재단 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2024.06.27
조회수 5372
-
잡아당겨도 고화질 유지하는 디스플레이 개발
평면에 국한됐던 디스플레이 기술이 곡면형 모니터나 폴더블 휴대폰 화면처럼 다양한 형태로 진화되고 있는데, 이보다 더 나아가 잡아당겨도 동작 가능한 신축형 디스플레이의 핵심 기술이 개발되어 화제다.
우리 대학 전기및전자공학부 유승협 교수 연구팀이 동아대 문한얼 교수, 한국전자통신연구원(ETRI) 실감소자 연구본부와의 협력을 통해 세계 최고 수준의 높은 발광면적비를 가지며 신축 시에도 해상도가 거의 줄지 않는 신축 유기발광다이오드(organic light-emitting diode, OLED) 디스플레이를 구현하는 데 성공했다고 11일 밝혔다.
공동연구팀은 유연성이 매우 뛰어난 초박막 OLED를 개발하여 이의 일부 발광 면적을 인접한 두 고립 영역 사이로 숨겨 넣는 방법으로, 신축성과 높은 발광 밀도를 동시에 확보하는 데 성공했다. 이렇게 숨겨진 발광 영역은 신축 시 그 모습을 점차 드러내며 발광 면적비의 감소를 보상하는 메커니즘을 가능케 했다.
기존의 신축형 디스플레이는 고정된 단단한 발광 부분을 이용하여 성능을 확보하면서, 굽혀진 모양의 연결부를 통해 신축성을 확보하는 경우가 일반적이다. 그런데 이 경우 빛을 내지 않는 굽힘 모양 연결부로 인해, 전체 면적에서 발광면적이 차지하는 비율이 낮은 한계점이 있다. 특히, 신축시에는 늘어난 굽힘 모양 연결부가 차지하는 면적이 더욱 커지면서 발광면적 비율이 한층 더 감소하는 문제가 있다.
공동연구팀은 제안된 구조체를 통해 신축 전 발광면적비가 100%에 근접하는 최고 수준을 달성했으며, 30%의 시스템 신축 후 발광면적비 또한 단지 10% 감소하는 플랫폼을 구현했다. 이는 같은 변형하에서 기존 플랫폼이 60% 수준의 높은 발광면적비 감소를 보이는 것과 대조적인 결과다. 또한 본 플랫폼은 반복 동작 및 다양한 외력 하에서도, 강건하게 동작하는 기계적 안정성을 보였다.
공동연구팀은 구형 물체, 실린더, 인체 부위와 같은 곡면에서 안정적으로 동작해, 풍선의 팽창이나 관절의 움직임 등을 수용할 수 있는 웨어러블 및 자유곡면에 부착할 수 있는 광원에 대한 응용성을 확인했으며, 숨겨진 발광영역의 독립적 구동을 통해 신축 시 저감되는 해상도 보상이 가능한 미래 디스플레이의 가능성을 확인하였다.
유승협 교수는 “이미 우리는 폴더블 휴대폰이나 곡면형 모니터 같이 더 이상 평면이 아닌 디스플레이를 쉽게 볼 수 있는 시대에 살고 있는데, 미래에는 디스플레이의 형태가 더욱 다양해지면서 궁극적으로 늘려도 동작하는 신축형 디스플레이 기술로 확장될 것으로 기대된다”면서 “이번에 개발된 기술은, 우수한 성능과 안정성이 확보된 OLED 기술을 그대로 활용하면서도 기존 신축형 디스플레이의 난제를 극복하는 방법을 제시한 것으로서, 신축형 디스플레이의 제품화를 더욱 가속화하는 계기가 되기를 희망한다”고 말했다.
유승협 교수 연구실의 이동균 박사(現 서울대학교 연수연구원)가 제1 저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 2024년 6월 5일자 게재됐으며 (논문명: Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation, DOI:: 10.1038/s41467-024-48396-w), 미국의 전기전자기술자협회 (Institute of Electrical and Electronics Engineers, IEEE)의 매거진인 ‘IEEE Spectrum’에 의해 온라인 뉴스로 소개되기도 하였다.
이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 한국전자통신연구원 연구운영비지원사업(ICT 소재·부품·장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2024.06.11
조회수 6995
-
실내 조명 활용해 최고 수준 이산화질소 감지 가능
우리 연구진이 기존까지 전무했던 녹색빛을 가스 센서에 조사하여 상온에서 최고 수준의 이산화질소 감지 성능을 보이는 것을 확인했다. 이를 통해 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다.
우리 대학 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소(NO2)를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다.
금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300 oC 이상 가열이 필요해 상온 측정에 한계가 있었다. 이를 극복하기 위한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받고 있으나, 기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다.
김일두 교수 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 크게 높였으며, 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가하였다. 특히 실내조명에 사용되는 백색광을 조사해 최고 수준의 이산화질소 가스 감지 반응성(0.8 ppm NO2, 감도 = 75.7)을 달성하는 데에 성공했다.
연구진은 가시광선의 흡수가 어려운 인듐 산화물(In2O3) 나노섬유*에 비스무스(Bi) 원소**를 첨가하여 청색광을 흡수할 수 있도록 중간 밴드 갭***을 형성시켰고, 금(Au) 나노입자를 추가적으로 결착하여 국소 표면 플라즈몬 공명** 현상을 통해 가시광 중 가장 풍부한 녹색광 영역에서의 활성도를 극대화했다. 비스무스와 금 나노입자 첨가 효과와 나노섬유가 갖는 넓은 비표면적 특성을 통해 상온에서 이산화질소 반응성을 기존 센서 대비 52배(0.4 ppm NO2 감도 기준) 증가시켰다.
*인듐 산화물 나노섬유: 인듐 산화물은 전기 전도 특성을 지닌 금속 산화물로, 이를 전기방사 공정을 통해 나노섬유 형상으로 제작함
**비스무스(Bi) 원소: 원자번호 83번의 원소로, 주기율표에서는 질소(N), 인(P), 비소(As), 안티모니(Sb)와 함께 15족(질소 족)에 속하는 원소
***밴드 갭(Band gap): 전자(electron)가 속박 상태에서 자유롭게 벗어나는 데 필요한 에너지 차를 의미하며 물질의 전기적, 광학적 성질을 결정하는 중요 요인 중 하나
***국소 표면 플라즈몬 공명(LSPR): 빛에 의해 나노입자 표면의 전하 수송체를 들뜬 상태로 만들고 금속산화물로 이동시켜 가스와의 산화-환원 반응을 촉진하는 원리
이번 연구의 연구책임자인 신소재공학과 김일두 교수는 “자동차 배기가스 및 공장 매연 등에서 배출되는 대표적인 대기 환경 유해가스인 이산화질소 가스를 우리 주변에서 일반적으로 접근할 수 있는 녹·청색광(430~570 nm) 영역의 가시광을 활용해 상온에서 초고감도로 감지가 가능한 신소재를 개발했다”라며 “가스 센서의 소비전력 및 집적화 문제를 해결할 수 있어, 향후 실내조명 및 기기와의 결합을 통한 가스 센서의 상용화에 큰 역할을 할 것으로 기대한다”라고 밝혔다.
신소재공학과 졸업생 박세연 박사(現 펜실베니아 대학교 박사 후 연구원), 신소재공학과 김민현 박사과정이 공동 제1 저자로 주도한 이번 연구는 재료 분야 국제권위 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’에 3월 4일 온라인 공개됐으며 6월 13일 24호 전면 속표지(Inside Front Cover) 논문으로 발표 예정이다. (논문명 : Dual-Photosensitizer Synergy Empowers Ambient Light Photoactivation of Indium Oxide for High-Performance NO2 Sensing)
한편 이번 연구는 한국연구재단 중견연구자지원 사업, 중소벤처기업부와 중소기업기술정보진흥원(TIPA)의 소재부품장비 전략협력기술개발사업의 지원을 받아 수행됐다.
2024.06.10
조회수 6304
-
KAIST 연구자들의 축제, 2024 리서치데이 개최
우리 대학이 '2024년 KAIST 리서치데이(Research Day)'를 21일 대전 본원 학술문화관(E9)에서 개최했다.
2016년부터 매년 개최하고 있는 'KAIST 리서치데이'는 탁월한 성과를 배출한 연구자를 포상하고 우수 연구성과를 공유해 연구개발(R&D) 정보를 교류하는 자리다.
최고 연구상인 '연구대상'은 방효충(항공우주공학과) 교수가 수상했다. 방 교수는 2001년 부임 이래 다양한 형태의 자율화 드론과 인공위성 자세제어기술을 연구해 왔다. 이를 통해, 초소형위성을 세 차례 우주로 발사하는 데 성공하고, 항공우주 연구와 교육을 선도한 업적을 높이 평가받았다.
이날 행사에서 방 교수는 수상을 기념해 '소형 드론의 자율화와 인공위성 유도․항법․제어 시스템 연구'를 주제로 강연한다. 소형 드론 기반의 자율 비행과 인공지능 기술을 결합한 자율화 연구가 민간 및 국방 분야에 적용된 사례와 초소형위성 시스템의 기술 자립화를 위한 연구 활동을 소개할 예정이다.방 교수는 "지난 10여 년간 항공우주의 핵심 기술 분야인 자율화 드론과 인공위성 제어 및 시스템을 연구해 국방기술과 국내 항공우주 기술 저변 확대에 기여하고 우수한 연구인력을 양성한 것에 큰 자부심을 느끼게 됐다"라고 수상 소감을 밝혔다.
이와 함께, 이재우(생명화학공학과), 김주영(전기및전자공학부) 교수가 각각 '연구상'을 수상한다. 리섕(Sheng Li, 생명화학공학과) 교수가 '특별연구상'을 받으며, 최준균(전기및전자공학부) 교수가 '이노베이션상' 수상자로 선정됐다.
정재웅(전기및전자공학부)·정원일(의과학대학원) 교수는 한 팀으로 ‘융합 연구상’을 받는다. ‘국제공동연구상’은 정희태(생명화학공학과) 교수, '현우 KAIST 학술상'은 오원석(경영공학부) 교수, 'QAIST 창의도전연구상'은 백윤정(화학과) 교수가 수상한다.
'KAIST 2023년 대표 R&D 연구성과 10선'도 소개된다. 심흥선(물리학과)·임미희(화학과)·주영석(의과학대학원)·박해원(기계공학과)·박종철(전산학부)·강이연(산업디자인학과)·조힘찬(신소재공학과)·제임스손(김재철AI대학원)·김형준(문술미래전략대학원)·인공위성연구소 연구팀 등이 지난 한 해를 대표하는 우수 연구를 수행한 것으로 평가받았다.
특히, KAIST 인공위성연구소는 주·야간 및 기상 조건과 관계없이 지표 관측이 가능한 영상레이다 위성을 개발해 교원 연구팀이 아닌 교내 연구조직 중심 연구팀 중 처음으로 대표 연구성과에 이름을 올렸다.
또한, 올해는 'KAIST 14대 미래선도기술'이 포상 분야로 추가됐다. 12대 국가전략기술에 탄소중립과 국방 기술까지 더한 총 14개 연구 분야로 산업적, 사회·경제적으로 탁월한 성과를 창출한 대표 연구성과들이 해당한다.
▴반도체·디스플레이 분야 최양규·최성율·최신현(전기및전자공학부), 김경민(신소재공학과) ▴이차전지 분야 김희탁(생명화학공학과) ▴첨단모빌리티 분야 이동만(전산학부) ▴차세대 원자력 분야 김용희(원자력및양자공학과) ▴첨단바이오 이상엽(생명화학공학과) ▴우주항공·해양 분야 강경인(인공위성연구소) ▴수소 분야 배중면(기계공학과), 신동혁(항공우주공학과) ▴사이버보안 분야 강민석(전산학부) ▴인공지능 분야 안성진(전산학부) ▴차세대통신 분야 김성민(전기및전자공학부) ▴첨단로봇·제조 분야 공경철(기계공학과) ▴양자 분야 안재욱(물리학과) ▴탄소중립 분야 김형준(문술미래전략대학원) ▴국방 분야 심현철(전기및전자공학부) 등 교원과 연구원을 포함한 총 18명이 수상자로 선정됐다. 조병관 연구처장은 "우수한 성과를 거둔 연구자들이 한자리에 모여 도전적이고 혁신적인 다양한 아이디어를 공유하는 오늘의 교류가 글로벌 과학기술을 선도하는 또 다른 연구의 시작점이 되길 바란다"라고 말했다.
2024.05.21
조회수 7192
-
현존 최고 성능 세라믹 전기화학전지 개발
온실가스 배출량을 '0'으로 만드는 글로벌 약속 '탄소중립(Net-zero)' 달성을 위해 탄소 배출을 줄이는 수소 에너지의 활용 및 생산은 선택이 아닌 필수적인 요소로 부상하고 있다. 이를 위한 에너지 변환 기술 중 고효율 전력 변환 및 그린수소 생산이 가능한 프로토닉 세라믹 전기화학전지(PCEC)가 미래 수소 에너지 사회를 촉진할 차세대 기술로 주목받고 있다.
우리 대학 기계공학과 이강택 교수, 신소재공학과 정우철 교수, 한국에너지기술연구원 이찬우 박사, 전남대학교 송선주 교수 공동 연구팀이 프로토닉 세라믹 전기화학전지의 산화물 전극 결정구조 제어를 통해 양성자 확산경로를 2차원에서 3차원으로 확장하는 데 성공해 전극의 촉매활성을 크게 향상시켰다고 14일 밝혔다.
비대칭 구조를 갖는 페로브스카이트 산화물계 전극은 구조적인 한계로 인해 양성자의 격자 내 이동이 제한으로 촉매 활성이 낮아 연료전지의 성능이 낮아진다는 문제점이 있었다. 연구팀은 이를 해결하기 위해, 이종 금속원소 후보군을 선정 및 도핑해 격자내에서 양성자가 이동하기 어려운 비대칭 구조를 성공적으로 대칭 구조화하여 양성자 수송 특성을 극대화 하였고, 이를 통해 고성능 전극 설계에 대한 단초를 마련했다. 또한 연구팀은 계산화학*을 통해 전극의 결정구조가 양성자 수송 특성에 미치는 영향에 대한 상관관계를 규명했다.
*계산화학: 컴퓨터를 이용해 화학 시스템의 구조와 반응성을 이론적으로 모델링하고 예측하는 학문
연구팀이 개발한 전극 소재는 프로토닉 세라믹 전기화학전지에 적용돼 현재까지 보고된 소자 중 가장 뛰어난 전력 변환 성능(650도에서 3.15 W/cm2)을 보이며 생산 과정 중 이산화탄소가 배출되지 않는 그린수소 또한 높은 생산 성능(650도에서 시간당 약 770 ml/cm2)을 보였다. 500시간의 장시간 구동 후에 가역 구동(전력 및 그린수소를 교대로 생산)에서도 안정적인 성능을 보여, 제시한 전극 설계 방법의 우수성이 입증됐다.
이강택 교수는 “이번 연구에서 제안한 전극 설계 기법이 프로토닉 세라믹 전기화학전지의 고성능 전력/그린수소 생산에 대한 새로운 방향성을 제시할 것으로 기대되며, 이 기술이 글로벌 넷제로 달성을 위한 수소 생산 및 친환경 에너지 기술 상용화에 촉매제가 될 수 있을 것”이라고 말했다.
우리 대학 기계공학과 김동연 박사과정, 정인철 박사, 신소재공학과 안세종 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지·재료 분야의 세계적 권위지인 ‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:27.8)’에 지난 4월 12일 字 후면표지(Back cover) 논문으로 게재됐다. (논문명: On the Role of Bimetal-Doped BaCoO3-���� Perovskites as Highly Active Oxygen Electrodes of Protonic Ceramic Electrochemical Cells)
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 이공분야기초연구사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2024.05.14
조회수 7542
-
제20회 KAIST 조정훈 학술상에 부산대 박동훈 교수 선정
‘제20회 KAIST 조정훈 학술상’ 수상자로 부산대학교 항공우주공학과 박동훈 교수가 선정됐다.
우리 대학은 박동훈 교수 외에 우리 대학 항공우주공학과 뱅쌍 마리오 피에르 우골리니(Vincent Mario Pierre Ugolini) 박사과정, 고려대학교 기계공학과 노도원 석사과정, 공주대학교 사범대학 부설고등학교 엄문영 학생 3명을 장학생으로 선발하고 이들에게 13일 오전 KAIST 본관 4층 제2회의실에서 장학금을 전달했다.
박동훈 교수는 극초음속 비행체가 대기 중을 비행할 때 발생하는 경계층 현상에 대한 실험 및 이론적 연구를 수행해 왔다. 이 연구는 현재 세계적인 관심사인 극초음속 미사일 개발에 응용될 수 있는 기술이다. 박 교수는 이 분야에서 극초음속 유동의 안정성을 분석할 수 있는 컴퓨터 프로그램을 자력으로 개발하여 국내 관련 기술 기반 확보에 기여했다. 박 교수는 관련 분야에서 최근 5년간 다수의 논문을 해외 유수 학술지에 게재했다.
공기역학 분야와 관련된 22건의 연구개발 과제를 수행해 국방 및 산·연과의 협력을 통해 많은 성과를 내고 있으며, 현재 연구재단이 국책사업으로 추진 중인 “육해공 무인 이동체 혁신 인재 양성사업”의 남부권 세부 책임자를 맡아 항공우주공학 분야의 인재 양성과 실무적 역량 제고에도 크게 기여해 오고 있다.
뱅쌍 우골리니 군은 프랑스 국적으로 현재 KAIST 항공우주공학과 박사과정 3년 차 대학원생으로, 달 착륙선에 적용할 수 있는 가변 추력 액체로켓을 연구하고 있다. 우골리니 군은 프랑스 파리에 소재한 그랑제콜 ESTACA (항공우주분야 특성화 대학)에서 석사학위를 마치고 KAIST 박사과정에 진학해 내년 2월 졸업을 앞두고 있다. 우골리니 군은 학위취득 후 한국에서 취업을 희망하고 있다.
한편, KAIST 조정훈 학술상은 2003년 5월 KAIST 로켓실험실에서 연구를 수행하던 중 불의의 사고로 숨진 故 조정훈 명예박사를 기리기 위해 제정됐다.
이 상은 故 조 박사의 부친인 조동길 교수가 유족보상금과 사재를 합쳐 KAIST에 학술기금으로 기부한 4억 7천800만 원을 재원으로 만들어졌으며, 2005년부터 매년 항공우주공학 분야에서 뛰어난 연구 업적을 이룬 젊은 과학자를 발굴해 시상하고 있다.
우리 대학은 또 이 기금으로 조 박사가 재학했던 KAIST와 고려대, 공주사대부고에서 매년 각 1명씩 장학생을 선발해 장학금을 수여하고 있다. 학술상 수상자에게는 2천500만 원의 상금, 대학(원)생은 400만 원, 고등학생은 300만 원의 장학금이 지급된다.
2024.05.13
조회수 4283
-
네이버·인텔과 AI 반도체 신 생태계 조성 공동 협력
챗GPT가 촉발한 생성형 인공지능(AI)*이 세계적으로 열풍을 일으키는 가운데 새로운 인공지능 반도체의 생태계 구축을 위해 KAIST(총장 이광형)가 네이버(NAVER) 및 인텔(intel)과 손잡고 상호 보유 중인 역량과 강점을 한 곳에 집중한 ‘NAVER · intel · KAIST AI 공동연구센터(NIK AI Research Center)’를 설립한다.
업계에서는 이들 세 기관의 전략적인 제휴가 인공지능 반도체·인공지능 서버와 데이터센터의 운영에 필요한 오픈소스용 소프트웨어 개발 등 인공지능 분야에서 각자 보유하고 있는 하드웨어 및 소프트웨어 기술과 역량을 융합해서 새로운 인공지능 반도체 생태계를 구축하는 한편 시장과 기술 주도권 확보를 위해 선제적인 도전에 나선 것으로 보고 있다.
특히 첨단 반도체 CPU 설계부터 파운드리까지 하는 세계적인 반도체 기업 인텔이 기존의 중앙처리장치(CPU)를 넘어 인공지능 반도체 ‘가우디(GAUDI)’**를 최적의 환경에서 구동하기 위해 오픈소스용 소프트웨어 개발 등을 목적으로 국내 대학에 공동연구센터를 설립하고 지원하는 것은 우리 대학이 처음이다.
우리 대학은 네이버클라우드(대표: 김유원)와 대전 KAIST 본원에서 인공지능 반도체·인공지능 서버와 클라우드·데이터센터 등의 성능개선과 최적의 구동을 위한 오픈소스용 첨단 소프트웨어 개발 등을 위해 ‘NAVER · intel · KAIST AI 공동연구센터(NIK AI Research Center)’ 설립과 운영을 주요 내용으로 하는 업무협약(MOU)을 체결했다고 30일 밝혔다.
우리 대학 관계자는 “인텔이 인공지능과 반도체 분야 오픈소스용 소프트웨어 개발파트너로 네이버와 KAIST를 선택한 것은 전략적으로 매우 큰 의미가 있다”라고 강조했다.
이 관계자는 특히 “네이버클라우드가 지닌 컴퓨팅·데이터베이스·인공지능 등 네이버 클라우드 플랫폼(NAVER Cloud Platform) 기반의 다양한 인공지능 서비스 역량과 인텔의 차세대 인공지능 칩 기술, 그리고 KAIST가 갖추고 있는 세계적 수준의 전문인력과 소프트웨어 연구 능력이 결합해 인공지능 반도체 분야에서 기존과는 다른 창조적이면서도 혁신적인 생태계 조성을 성공적으로 이뤄낼 것”이라고 기대했다.
이날 협약식 행사에는 이광형 총장을 비롯해 이균민 교학부총장, 이상엽 연구부총장, 전기및전자공학부 김정호 교수 등 주요 보직교수가, 네이버클라우드 김유원 대표이사와 하정우 AI 이노베이션 센터장, 이동수 하이퍼스케일 AI 담당 이사 등 주요 경영진이 참석했다.
우리 대학과 네이버클라우드는 이번 MOU 체결을 계기로 올 상반기 중에 KAIST에 ‘NAVER · intel · KAIST AI 공동연구센터(NIK AI Research Center)’를 설치하고 7월부터 본격적인 연구에 들어갈 계획이다.
우리 대학에서는 고대역폭메모리(HBM)*** 등 인공지능 반도체 설계와 인공지능 응용설계(AI-X) 분야에서 세계적인 석학으로 꼽히는 전기및전자공학부 김정호 교수가, 네이버클라우드 측에서는 인공지능 반도체 설계 및 인공지능 소프트웨어 전문가인 이동수 이사가 공동연구센터장을 맡는다. 또 KAIST 전산학부 성민혁 교수와 네이버클라우드 권세중 리더가 각각 부센터장으로서 공동연구센터를 이끈다.
공동연구센터의 운영 기간은 3년인데 연구성과와 참여기관의 필요에 따라 연장한다. KAIST에 설치되는 공동연구센터가 핵심 연구센터로서 기능과 역할을 맡는 데 KAIST에서 인공지능과 소프트웨어 분야 전문가인 20명 내외의 교수진과 100여명의 석·박사 대학원생들이 연구진으로 참여한다.
초기 2년간은 인텔의 하바나랩스가 개발한 인공지능 학습 및 추론용 칩(Chip) ‘가우디(GAUDI)’를 위한 플랫폼 생태계 공동 구축을 목적으로 20~30개 규모의 산학 연구과제를 진행한다.
자연어 처리, 컴퓨터 비전과 머신러닝 등 주로 인공지능 분야 오픈소스용 소프트웨어 개발 위주로 연구가 이뤄지는데 자율 주제 연구가 50%, 인공지능 반도체의 경량화 및 최적화에 관한 연구가 각각 30%와 20%를 차지한다.
이를 위해 네이버와 인텔은 네이버 클라우드 플랫폼 기반의 ‘가우디2(GAUDI2)’를 우리 대학 공동연구센터에 제공하며 KAIST 연구진은 ‘가우디2’를 이용한 논문 등 연구 실적을 매년 공개한다.
이 밖에 인공지능·클라우드 등 각자가 보유한 역량 외에 공동 연구에 필요한 각종 인프라 시설(Infrastructure)과 장비 등을 공유하는 한편 연구 인력의 상호 교류를 위해 공동연구센터에 필요한 공간과 행정인력을 지원하는 등 다양한 협력 활동을 전개할 방침이다.
우리 대학 김정호 교수는 “KAIST는 가우디 시리즈의 활용을 통해 인공지능 개발, 반도체 설계와 운영 소프트웨어 개발 등에서 기술 노하우를 확보할 수 있다”라면서, “특히 대규모 인공지능 데이터센터 운영 경험과 향후 연구개발에 필요한 인공지능 컴퓨팅 인프라를 확보할 수 있다는 점에서 이번 공동연구센터 설립이 매우 큰 의미가 있다”라고 강조했다.
네이버클라우드 이동수 이사는 “네이버클라우드는 KAIST와 함께 다양한 연구를 주도해 나가며 하이퍼클로바X 중심의 인공지능 생태계가 확장되기를 기대한다”라며, “공동연구센터를 통해 국내 인공지능 연구가 보다 활성화되고 인공지능 칩 생태계의 다양성이 확보되기를 바란다”라고 말했다.
2024.04.30
조회수 6009
-
국내 최초 HPCA 최우수논문상 수상
우리 대학 연구진이 컴퓨터 구조 분야 국제 최우수 학술대회에서 최우수논문상을 국내 최초로 수상했다. 이는 제출된 논문 410편 중에서 상위 1편에만 주어진 영예다.
전기및전자공학부 유민수 교수 연구팀이 국제 최우수 컴퓨터 아키텍처 학술대회 중의 하나인 ‘IEEE 국제 고성능 컴퓨터 구조 학회(IEEE International Symposium on High-Performance Computer Architecture, HPCA)’에서 최우수논문상(Best Paper Award)을 수상했다고 21일 밝혔다.
전기및전자공학부 현봉준 박사과정(제1 저자), 김태훈 박사과정, 이동재 박사과정으로 구성된 유민수 교수 연구팀은 프랑스 기업 UPMEM 社의 상용화된 프로세싱-인-메모리(Processing-In-Memory, PIM) 기술을 기반으로 한 ‘유피뮬레이터(uPIMulator)’라는 시뮬레이션 프레임워크를 제안하여 최우수논문상을 수상했다.
최근 주목받고 있는 챗GPT와 같은 대형 언어 모델(Large Language Model) 및 추천시스템은 많은 양의 메모리 대역폭(메모리에서 한 번에 빼낼 수 있는 데이터의 양)을 요구하는 특성을 지닌다. 기존의 CPU 및 GPU 기반 시스템은 물리적 한계로 인해 이러한 증가하는 메모리 대역폭의 수요를 충족시키는 데 있어 제약이 따른다.
제한된 메모리 대역폭 문제를 해결하기 위해, 메모리 내부에 연산 장치를 통합하는 PIM 기술이 주목받기 시작했다. PIM 기술은 학계뿐만 아니라 산업계에서 각광을 받으며, 메모리 반도체와 인공지능 프로세서가 하나로 결합한 삼성전자의 HBM-PIM, SK 하이닉스의 생성형 AI 특화 가속기인 AiMX와 같은 PIM 프로토타입 제품의 공개뿐만 아니라, UPMEM 社의 UPMEM-PIM 제품을 통한 상용화 사례로 그 가능성을 입증하고 있다.
그러나 현재 PIM 기술은 CPU나 GPU와 같은 하드웨어 구조의 발전 수준에 비해 상대적으로 초기 단계에 머물러 있으며, 폭넓은 하드웨어 구조에 관한 연구가 요구된다. 다양한 하드웨어 설계 영역 탐색을 위해 하드웨어를 모사하는 시뮬레이터가 학계 및 산업계에서 자주 활용되지만, PIM을 위한 시뮬레이터 연구는 상대적으로 미비한 현실이다.
유민수 교수 연구팀은 상용 PIM 기술, UPMEM-PIM 제품을 기반으로 한 설계 및 검증을 거친 시뮬레이터 개발을 통해 PIM의 성능, 견고성, 보안성을 개선할 수 있는 다양한 하드웨어 구조를 탐색했다. 이 연구는 실제 PIM 제품에 근거한 시뮬레이터를 통해 PIM 하드웨어 구조에 대한 상세한 분석 및 다양한 설계 방향성을 탐색하는 데 의의가 있으며, 개발된 시뮬레이터는 현재 오픈소스로 공개돼(https://github.com/VIA-Research/uPIMulator) 연구 및 개발 커뮤니티에 기여하고 있다.
상을 수상한 전기및전자공학부 유민수 교수는 “이번 성과를 바탕으로 앞으로의 연구 발전에 더욱 기여할 수 있도록 노력하겠다. 함께한 모든 학생들에게도 감사의 마음을 전한다” 라고 수상 소감을 전했다.
한편 이번 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단, 정보통신기획평가원, 그리고 삼성전자의 지원을 받아 수행됐다.
2024.03.21
조회수 7190
-
극저온일수록 강력한 초고속 반도체 소자 개발
KAIST 연구진이 초고속 구동이 가능하고 온도가 낮아질수록 성능이 더욱 향상되어 고주파수 대역 및 극저온에서의 활용 가능성이 기대되는 고성능 2차원 반도체 소자 개발에 성공하였다.
전기및전자공학부 이가영 교수 연구팀이 실리콘의 전자 이동도와 포화 속도*를 2배 이상 뛰어넘는 2차원 나노 반도체 인듐 셀레나이드(InSe)** 기반 고이동도, 초고속 소자를 개발했다고 20일 밝혔다.
*포화 속도(Saturation velocity): 반도체 물질 내에서 전자나 정공이 움직일 수 있는 최대 속도를 가리킴. 포화 속도는 포화 전류량 및 차단 주파수(Cutoff frequency) 등을 결정하며 반도체의 전기적 특성을 평가할 수 있는 핵심 지표 중 하나임.
**인듐 셀레나이드(InSe): 인듐과 셀레늄으로 이루어진 무기 화합물로 2차원 층간 반데르발스 결합을 이루고 있음
연구진은 고이동도 인듐 셀레나이드에서의 2.0×107 cm/s를 초과하는 우수한 상온 전자 포화 속도 값을 달성하였는데, 이는 실리콘과 다른 유효한 밴드갭을 지니는 타 2차원 반도체들의 값보다 월등히 우수한 수치이다. 특히 80 K으로 냉각시 InSe의 전자 포화 속도는 최대 3.9×107 cm/s로 상온 대비 50% 이상 향상되는데, 이는 전자 포화 속도가 약 20% 정도만 상승하는 실리콘 그리고 냉각하여도 포화 속도에 거의 변화가 없는 그래핀 대비 주목할만하다. 인듐 셀레나이드의 전자 포화 속도를 체계적으로 분석하여 보고한 것은 이번이 처음이며, 연구진은 전자 포화 속도 양상의 결정 기제 또한 규명하였다.
*이종접합: 서로 다른 결정 반도체의 2개의 층 또는 영역 사이의 접점
이번 연구를 주도한 석용욱 학생은 “고성능 소자 개발을 통해 2차원 반도체 InSe의 높은 전자 이동도와 포화 속도를 확인할 수 있었다”며 “실제 극저온 및 고주파수 구동이 필요한 응용 기기에의 적용 연구가 필요하다”라고 덧붙였다.
이가영 교수는 “고주파수 전자 시스템 구현에는 높은 포화 속도가 요구되는데 이번에 개발한 고성능 전자 소자는 초고속 구동이 가능하여 5G 대역을 넘어 6G 주파수 대역에서의 동작이 가능할 것으로 예측된다”며 “저온으로 갈수록 소자의 성능이 더욱 향상되어 퀀텀 컴퓨터의 양자 제어 IC(Integrated circuit)와 같이 극저온 고주파수 구동 환경에 적합하다.”라고 말했다.
KAIST 전기및전자공학부 석용욱 박사과정 학생이 제1저자로 참여한 이번 연구는 나노과학 분야 저명 국제 학술지 `ACS Nano'에 2024년 3월 19일 정식 출판됐으며 동시에 저널 표지 논문으로 채택됐다. (논문명 : High-Field Electron Transport and High Saturation Velocity in Multilayer Indium Selenide Transistors)
한편 이번 연구는 한국연구재단의 신진연구자지원사업, 기초연구사업 및 BK21, KAIST의 C2(Creative & Challenging) 프로젝트, LX 세미콘-KAIST 미래기술센터, 그리고 포스코청암재단의 지원을 받아 수행됐다.
붙임 : 연구개요, 그림 설명, 교수 이력
2024.03.20
조회수 7104
-
세계 최고 수준 리튬 금속배터리 용매 개발
휴대용 전자기기 및 전기차 등에 적용해 1회 충전에 많은 에너지를 저장하고 오래 사용할 수 있는 고 에너지밀도 이차전지 개발의 중요도가 커지고 있다. 한국 연구진이 리튬 이차전지의 에너지 밀도를 높이고 고전압 구동시 안정성을 높여줄 용매를 개발하여 화제다.
우리 대학 생명화학공학과 최남순 교수팀이 UNIST 화학과 홍성유 교수팀, 서울대 화학생물공학부 이규태 교수팀, 고려대 화공생명공학과 곽상규 교수팀, 경상국립대 나노·신소재공학부 고분자공학전공 이태경 교수와 공동연구를 통해 4.4V의 높은 충전 전압에서 리튬 금속전지의 효율과 에너지를 유지하는 세계 최고 수준의 전해액 조성 기술을 개발했다고 19일 밝혔다.
공동연구팀은 기존에 보고되지 않은 용매를 새롭게 디자인하고 합성해 전해액 주 용매로 사용했으며 전극-전해액 계면을 안정화하는 첨가제 기술과의 조합을 통해 리튬 금속전지의 고전압 수명 성능 및 고속 충전 특성을 획기적으로 높이는 데 성공했다.
리튬 금속전지를 오랜 시간 사용하기 위해서는 전해액의 이온 전달 성능뿐만 아니라 전극 표면을 보호하는 것이 필수적이다. 전자를 주는 성질이 강한 리튬금속 음극과 전자를 빼앗으려는 고전압 양극에 접촉하고 있는 전해액이 분해되지 않도록 전극과 전해액 사이에 보호층을 형성시켜야 한다.
최남순 교수 연구팀은 구동할 수 있는 상한 전압의 한계가 있는 용매들과는 달리 높은 충전 전압에서 안정적으로 사용할 수 있는 새로운 용매를 합성하는 데 성공했으며 이를 첨가제 기술과 접목해 현저하게 향상된 *가역 효율(상온 200회 99.9%)을 달성했다. 또한, 완전 충전-완전 방전 조건에서 첫 사이클 방전용량 대비 200사이클의 방전용량으로 용량 유지율을 측정하는데 개발된 전해액 기술은 리튬 대비 4.4V 높은 충전 전압 조건에서 다른 전해액보다 약 5% 정도 높은 75.0%의 높은 방전용량 유지율을 보였다.
☞ 가역 효율: 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움.
연구팀이 이번 연구에서 세계 최초로 합성 및 보고한 *환형 설폰아마이드 계열 용매인 TFSPP(1-(trifluoromethyl)sulfonyl)piperidine)는 기존에 사용되는 용매보다 우수한 고전압 안정성을 가져 전지 내부 가스 발생을 억제할 수 있음을 확인했다.
☞ 환형 설폰아마이드 용매: 질소원자 1개원 탄소원자 5개로 구성된 6원자 고리구조와 리튬염 구조를 모방한 작용기를 연결하여 제조되었으며 기존 에테르계 유기용매와 비교하여 3배 이상 높은 열안정성을 가짐. 또한, 상온에서 액체상태이며 리튬염을 녹일수 있는 용매임. 불에 잘 타는 일반적인 유기용매와는 달리 불에 타는 성질이 낮은 리튬염의 음이온 구조가 포함되어 있어 전해액의 발화 가능성을 낮출 것으로 기대됨.
또한, 연구팀은 두 가지 이온성 첨가제를 도입하여 리튬 금속 음극에 형성된 보호층이 부피 변화를 견디도록 설계했다. 이에 더해, 연구팀은 전자 방출 경향성이 높은 첨가제를 적용해 양극 표면에 보호층을 형성해 양극의 구조 안정성을 향상시켰다. 개발된 새로운 구조의 고전압 용매는 전극을 보호하는 첨가제와 함께 시너지 효과를 이끌어 고전압 리튬 금속전지 성능을 극대화했다는 점에서 그 의미가 크다.
이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 “용매와 첨가제의 조합 기술을 통해 실용화가 가능한 리튬 금속전지용 용매 조성 프레임을 개발했으며 전지의 사용기간을 연장하는, 보다 안정적인 전극-전해액 계면층을 형성하는 새로운 전해액 조성 기술을 개발했다”라고 말했다.
최남순 교수는 “새로운 구조로 디자인된 TFSPP 용매는 기존 용매에 비해 열적 및 고전압 안정성이 매우 우수하고 전지 구동 중 전해액 분해를 최소화해 전지 내압 상승요인인 가스 발생을 억제하는 전해액 용매”임을 강조하며 “TFSPP를 주 용매로 사용해 전지의 고온 안정성을 개선했으며 본 연구팀 고유기술인 다중층 전극-전해액 보호층 형성을 통해 안정화함으로써 고전압 리튬 금속전지 실용화를 위한 전해액 설계에 있어서 새로운 이정표를 제시했다”라고 연구의 의미를 덧붙였다.
우리 대학 생명화학공학과 최남순 교수, 김세훈, 송채은, 이동현 연구원과 UNIST 화학과 홍성유 교수, 전지환 연구원, 서울대 화학생물공학부 이규태 교수, 박교빈, 송가원 연구원, 고려대 화공생명공학과 곽상규 교수, 권성현 연구원, 유승호 교수, 현재환 연구원, 그리고 경상국립대 나노·신소재공학부 고분자공학전공 이태경 교수가 진행한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈 (Advanced Materials)’에 3월 6일 字로 온라인 공개됐다. (논문명 : Electrolyte Design for High-Voltage Lithium-Metal Batteries with Synthetic Sulfonamide-Based Solvent and Electrochemically Active Additives)
한편 이번 연구는 한국연구재단의 단계도약형 탄소중립 기술개발사업과 한국산업기술평가관리원의 산업기술 혁신사업의 지원을 받아 수행됐다.
2024.03.19
조회수 9462
-
′인구 위기를 과학기술로 극복′ 아이디어 찾습니다
우리 대학이 국가적 당면 과제인 인구 위기를 과학기술 아이디어로 해결하기 위한 대국민 아이디어 공모전을 개최한다. 2022년에 이어 두 번째로 열리는 'KAIST Crazy Day 아이디어 공모전'은 우리 대학과 국민이 함께 획기적인 역발상 아이디어를 찾아 공유하는 행사다.
파격적(Crazy)이고 창의적인(Creative) 사고, 실패를 두려워하지 않는 도전적 자세(Challenging), 타인을 향한 배려(Caring) 등 ‘4C’로 상징되는 KAIST 고유의 정신을 바탕으로 우리 사회가 직면한 위기와 도전 과제에 능동적으로 대처하는 문화를 확산하기 위해 마련됐다. 오는 18일부터 다음 달 12일까지 제안서를 접수하는 이번 공모전은 '인구 위기 극복을 위한 과학기술의 활용 아이디어'를 발굴한다. 특히, 초저출산, 초고령화, 인구감소, 경제성장률 위축, 지방소멸, 병역자원 부족 등 우리 사회가 직면한 인구 전환기에 대응하는 아이디어를 토대로 문제를 해결하기 위한 논의의 장을 마련하는 것이 목표다. 과학기술을 접목해 인구 위기를 극복할 수 있는 독창적이고도 색다른 아이디어가 있는 사람이라면 개인 또는 3인 이하의 팀을 이뤄 누구나 참여할 수 있다. 우리 대학 홈페이지(☞알림사항 바로가기 클릭) 또는 KAIST 국가미래전략기술 정책연구소 홈페이지(☞바로가기 클릭)를 통해 1인(팀)당 1건의 아이디어를 접수 기간 내에 제안하면 된다. 접수된 제안서는 아이디어의 구현 가능성, 사회‧윤리적 효과, Crazy Day 정신(4C) 부합성, 혁신성, 대중성, 상징성 등을 기준으로 내·외부위원으로 구성된 심사단의 평가를 거친다. 선발된 상위 5개 팀은 오는 6월 우리 대학 대전 본원에서 열리는 공개 발표 심사에 참여해 최종 수상작을 가리게 된다. 대상 1팀에는 500만 원, 최우수상 1팀 300만 원, 우수상 3팀에는 각 100만 원의 상금과 함께 KAIST 총장상이 수여된다. 이광형 총장은 "지난해 우리나라의 합계출산율은 0.72명으로 2025년 초고령사회로의 진입이 예상되며, 고령화의 속도도 세계에서 가장 빠르게 진행되는 만큼 인구문제에 국민 모두가 관심을 가지고 극복을 위한 지혜를 모아야 한다"라고 말했다. 이어, 이 총장은 "인류가 위기에 처할 때마다 과학기술은 돌파구를 만들어준 원동력이었다”라며, “이번 공모전을 통해 훌륭한 아이디어가 많이 제안되어 인구 위기 극복으로 이어지기를 바란다"라고 밝혔다.
2024.03.15
조회수 8535
-
인공지능·우주·수리 ′초세대 협업연구실′ 개소
우리 대학이 '초세대 협업연구실'을 추가 개소하고 27일 오전 현판식을 개최했다. 권인소 전기및전자공학부 교수의 '비전중심 범용인공지능 연구실', 김천곤 항공우주공학과 교수의 '우주·극한 환경 재료 및 차세대 공정 연구실', 변재형 수리과학과 교수의 '편미분방정식 통합 연구실'이 새롭게 문을 연다.
초세대 협업연구실은 은퇴를 앞둔 교수가 오랜 시간 축적해 온 학문의 성과와 노하우를 후배 교수와 협업하며 이어가는 우리 대학의 독자적인 연구제도다. 2018년 도입한 이후 지난해 말까지 7개 연구실을 운영하고 있으며, 이번 추가 개소로 총 10개의 초세대 협업연구실을 보유하게 됐다. 특히 권인소, 김천곤 책임교수는 65세 은퇴 후 70세까지 강의와 연구 논문 지도를 이어가는 정년후 교수의 신분으로 초세대 협업연구실을 개소했다.
권인소 교수가 책임교수를 맡은 '비전중심 범용인공지능 연구실'은 같은 학과 김준모 교수 협업하고 딥러닝 분야의 신임 교수가 추후 합류할 예정이다. 권인소 책임교수는 컴퓨터비전·로봇공학·인공지능 분야에서 탁월한 연구 업적을 보유한 세계적인 석학이다. 2013년부터 10년간 로보틱스 최고 학술대회 및 저널 기준 총 103편의 논문을 게재했으며, 그간 발표한 모든 논문의 피인용 수는 4만 5천 회를 넘어선다. 또한, 컴퓨터 비전 분야의 국내·외 특허를 100건 이상 등록해 기술 사업화 및 실질적인 기술 혁신의 토대를 마련했다. 김준모 참여교수는 딥러닝 알고리즘 기반 컴퓨터 비전 및 신호처리 분야 전문가로 인공지능 기술을 다양한 분야에 응용하는 신진 연구 리더다.
이들은 권 책임교수의 로봇공학 및 3D 비전 분야 전문성과 노하우 바탕으로 인간의 학습은 본질적으로 관찰과 경험에 기반한다는 점에 착안한 연구를 진행한다. 시각적 정보를 중심으로 인공지능 모델이 인간의 복잡한 계획 및 추론 능력을 재현하는 것은 물론 실질적인 객체로서 인간과 상호작용이 가능한 수준의 범용인공지능(AGI)을 실체화하는 것이 연구 목표다.
권인소 교수는 "컴퓨터 비전과 로봇공학 분야에서 쌓아온 연구 유산을 전수하게 되어 기쁘고, 초세대 협업연구실이 인공지능 기술의 산업화, 후속 세대 인공지능 전문가 양성, 글로벌 인공지능 리더십을 확보하는 데 핵심적인 역할을 할 것으로 생각한다"라고 소감을 전했다.
한편, 미지의 영역에 도전하기 위해 장기간의 연구가 필요한 우주 분야에서도 협업연구실이 선정됐다. '우주/극한 환경 재료 및 차세대 공정 연구실'은 김천곤 항공우주공학과 교수가 책임교수를 맡고 이전윤, 조한솔 교수가 참여한다. 김천곤 책임교수는 우주 환경에서 사용되는 다양한 복합재료 분야에서 선도적인 연구를 수행해온 연구자다. 특히, 초고속 충돌장비, 지구저궤도 우주환경 모사 장비처럼 국내외 유일성과 우수성이 검증된 실험 장비를 자체 제작하고 다양한 항공 우주 및 극한 환경 재료 시스템의 설계와 공정에 적용해온 독보적인 기술을 보유하고 있다.
김 교수의 우주 환경 모사 장비, 초고속 충돌 장비 등의 공동 활용 및 연구 노하우를 바탕으로 차세대 복합재 생산공정을 연구하고 있는 이전윤 참여교수와 전산 해석을 중심으로 극한 환경 구조 및 재료의 움직임에 대한 이해와 전문성을 지닌 조한솔 교수가 긴밀하게 협력해 차세대 우주 및 극한재료에 관한 새로운 연구 분야를 개척하는 것이 목표다. 김천곤 책임교수는 "1991년 부임 당시에 故 홍창선 교수님이 1979년에 설립하신 연구실에 합류해 32년간 운영한 뒤 정년을 맞았는데, 다시 한번 세대를 이어 두 분의 젊고 열정적인 교수님들에게 연구를 전수하고 새로운 아이디어를 접목해 계속해서 발전시켜 나갈 수 있게 되어 기쁘다"라고 소감을 전했다.
변재형 수리과학과 교수의 '편미분방정식 통합연구실'에는 권순식, 강문진 교수가 참여한다. 변재형 책임교수는 국내 수학계의 위상을 높인 석학으로 타원형 편미분방정식의 연구의 중요한 난제들을 새로운 방법으로 해결하고 다양한 연구 분야를 독창적으로 개척해 왔다.
권순식 참여교수는 자연계의 다양한 파동 현상을 기술하는 비선형 분산 방정식의 동역학 연구 분야의 최정상급 전문가다. 강문진 참여교수는 유체역학의 꽃인 나비에-스토크스 방정식과 오일러 방정식에 관한 가장 중요한 문제 중 하나를 해결해 주목받았으며, 이와 관련한 장기 연구 프로젝트를 수행하고 있다. 이들은 협업을 통해 각 연구를 심화시키는 동시에 새로운 방향성을 제시하는 시너지를 창출해 아시아 최고의 편미분방정식 연구그룹을 구축하는 것을 목표로 삼았다.
변재형 책임교수는 "수리과학과 최초의 초세대 협업연구실로 선정된 것을 뜻깊게 생각하고 KAIST가 편미분방정식의 혁신적 도약을 주도하는 연구 허브로서 새로운 지평을 열어갈 수 있도록 매진하겠다"라고 전했다. '초세대 협업연구실' 현판식은 이동만 교학부총장과 이균민 대외부총장 등 주요 보직자들, 새롭게 선정된 연구실 관계자들이 참석한 가운데 27일 오전 10시부터 진행됐다.
2024.02.27
조회수 6691