-
차미영 교수, 한국인 첫 獨 막스플랑크 연구소 단장 선임
세계적 기초과학 연구기관인 독일 막스플랑크 연구소(Max Planck Institute, MPI)에 첫 한국인 단장이 선임됐다. 우리 대학 전산학부 차미영 교수(기초과학연구원 수리 및 계산 과학 연구단 데이터 사이언스 그룹 CI(Chief Investigator))가 그 주인공이다. 차 교수는 독일 보흠 지역에 있는 막스플랑크 보안 및 정보보호 연구소(MPI for Security and Privacy)에서 6월부터 단장(Scientific Director)직 수행을 시작해 ‘인류를 위한 데이터 과학(Data Science for Humanity)’ 연구그룹을 이끌 예정이다. 현재 본격적인 연구그룹 출범을 준비하고 있다.
막스플랑크 연구소는 기초과학 분야를 아우르며 독일 전역과 해외에 85개 산하 연구소를 운영하고 있다. 연구소를 이끄는 300여 명의 단장 중 한국 국적 과학자가 발탁된 것은 이번이 처음이다. 한국계로는 지난해 8월 울산과학기술원(UNIST) 강사라 교수가 기후과학연구소 단장으로 선임된 바 있다.
차 교수는 구글 스칼라(Google Scholar) 기준 피인용 수 2만 회가 넘는 데이터 과학 분야 전문가로, 우리 대학 전산학부를 졸업하고 동 대학원에서 석·박사 학위를 받은 ‘토종박사’다. 박사 취득 이후 독일 자부르켄에 있는 막스플랑크 연구소에서 박사후연구원으로 근무했으며, 2010년부터 우리 대학 교수로 재직하고 있다. 2019년에는 IBS의 CI로 선정돼 데이터 사이언스 그룹을 이끌며 인공지능(AI) 분야에서 우수 논문을 다수 발표하는 등 국제적 인지도를 높였다.
차 교수가 이끄는 데이터 사이언스 그룹은 2019년 출범해 초대형 데이터를 계산하고 분석하는 방법론을 연구하고 있다. 특히 AI를 이용해 가짜뉴스와 혐오 표현을 탐지하는 등 우리 삶과 밀접한 사회 현상을 분석해 괄목할 만한 연구성과를 창출했다.
코로나19 팬데믹 시절 ‘루머를 앞선 팩트’ 캠페인을 기획해 감염병 관련 잘못된 정보에 대한 팩트체크 결과를 151개국에 전파했다. 최근에는 위성영상을 AI로 분석해 북한을 비롯한 저개발국가의 경제지도를 만들어 무료로 공개했다. 최근 실시한 5년 차 평가에서 AI 기술을 기초과학에 창의적으로 활용해 차별성 있는 연구를 수행했으며, 데이터 과학 연구의 사회적 가치를 제고할 수 있는 핵심 기술을 개발하는 등 국제적 파급력 있는 연구성과를 창출했다는 평가를 받았다.
IBS 노도영 원장은 “IBS는 미래 연구단장을 발굴·육성하기 위해 젊은 연구자를 선정해 독립 연구를 지원하고 있다”라며, “이 제도로 발굴한 연구자가 막스플랑크 연구소 단장으로 초청받은 것에 대해 매우 기쁘게 생각하며 한국과 독일의 국제 연구 교류에도 크게 기여할 것으로 기대한다”라고 전했다.
우리 대학 이광형 총장은 “KAIST가 키워낸 차 교수의 행보는 국제화에 좋은 롤모델이 될 것”이라며, “계속해서 KAIST 학생 및 동료와 협업할 수 있도록 겸직을 비롯한 지원을 아끼지 않겠다”라고 축하의 메시지를 전했다.
차미영 CI는 “KAIST 교수로 쌓아온 경험에 더하여 IBS에서 긴 호흡으로 창의적인 연구를 지속한 덕분에 좋은 결과를 얻은 것 같다”라며, “앞으로 큰 책임감을 가지고 데이터 과학을 통한 사회 공헌을 위해 최선을 다하겠다”라고 포부를 밝혔다.
2024.01.09
조회수 8338
-
권태형 박사과정, 고지훈 석박사통합과정, IEEE ICDM 2023 최우수논문상 수상
우리 대학 김재철AI대학원 권태형 박사과정, 고지훈 석박사통합과정 (지도교수 신기정)이 지난 12월 중국 상해에서 열린 제23회 IEEE International Conference on Data Mining (IEEE ICDM)에서 최우수 논문상(Best Student Paper Runner-up)을 수상했다.
IEEE ICDM은 매년 개최되는 데이터 마이닝 분야 최고 권위의 국제 학회 중 하나다. 올해는 총 200편의 논문이 발표됐고 그 중 권태형, 고지훈 학생이 참여한 논문을 포함한 4편의 논문이 최우수 논문으로 선정됐다.
논문 제목은 ‘텐서코덱: 데이터에 대한 가정이 필요 없는 간결한 텐서의 손실 압축 기법’(TensorCodec: Compact Lossy Compression of Tensors without Strong Data Assumptions)이다.
이 연구에서는 텐서, 즉 고차원 행렬 데이터를 위한 압축 기술을 제시하였다. 텐서-열차 분해(Tensor-Train Decomposition)와 인공신경망을 결합하여 압축 성능을 향상했으며, 행과 열을 재배치하고 차원을 증가시키는 등 입력 텐서의 형태에 대한 최적화를 통해 압축 성능을 추가로 개선하였다. 또한, 다양한 실세계 데이터를 사용하여 제안된 방법의 우수성과 범용성을 검증하였다.
권태형, 고지훈 학생은 “항상 연구에 대한 열정이 가득하시고, 창의적인 아이디어를 제공하여 연구의 돌파구를 열어 주신 신기정 교수님의 지도 덕분에 수상이 가능했다”며 “해당 아이디어가 더욱 고도화되어, 추천시스템, 이상 탐지, AI 모델 경량화 등 다양한 분야에서 활용될 수 있기를 바란다”고 말했다.
이 연구에는 권태형 박사과정, 고지훈 석박통합과정, 신기정 교수 외에 숭실대학교 정진홍 교수가 참여하였으며, 정보통신기획평가원의 지원을 받은 강건하고 공정하며 확장 가능한 데이터 중심의 연속 학습 과제와 한국연구재단의 지원을 받은 부호화된 그래프 마이닝 과제의 성과다.
2024.01.02
조회수 6049
-
대북 제재 영향을 야간조도로 추정하다
경제 제재가 해당 국가의 경제에 미치는 영향에 대해서는 제대로 파악하기가 쉽지 않다. 제재를 받는 국가의 특성상, 신뢰할 수 있는 데이터를 얻기가 힘들고, 데이터가 있어도 경제 제재의 영향 때문인지 해당 국가의 기존 정책 기조 등 다른 원인 때문인지 구분하기가 쉽지 않기 때문이다.
우리 대학의 경영대학 기술경영학부 김지희 교수가 한국개발연구원(KDI) 김규철 박사, 홍콩과기대(HKUST) 박상윤 교수, 홍콩대(HKU) 창 선(Chang Sun) 교수와 공동 연구를 통해, 대북 제재가 북한 경제에 실질적으로 미친 영향을 북한의 야간조도를 활용해 추정했다고 13일 밝혔다.
북한은 2016-2017년 동안 여러 차례에 걸쳐 미사일 시험 발사와 핵실험을 진행했고, 이에 대응하여 UN과 미국을 비롯한 국제 사회는 대북 제재를 강화해 왔다(그림 1). 연구진은 이 시기에 대북 제재가 북한 경제에 미친 영향을 추정하기 위해, 국내 북한 전문가들이 그동안 구축해 놓은 데이터와 북한의 야간 조도를 활용하고, 지역별 산업 구조에 따라 제재에 영향을 받는 정도가 다름을 측정해 제재 효과 추정의 어려움을 극복했다.
구체적으로 연구진은 산업연구원 이석기 박사 연구팀에서 구축한 북한 기업 데이터를 활용해 북한의 각 지역별 제조업종별 비중을 계산한 후, UN에서 제공하는 국가별 무역 거래 데이터(Comtrade) 및 북한 제재 물품 목록과 결합해, 지역별로 제재에 영향을 받는 정도를 나타내는 제재 취약도(sanction exposure)를 계산했다. (그림 2)
또한 인공위성 야간 조도 데이터와 북한과 비슷한 경제 수준을 나타내는 중국 특정 지방의 GDP-야간 조도 탄력성을 사용해 2013~2019년 북한의 지역별 제조업 생산량을 추정했다. 이러한 데이터를 활용해 지역별 제재 취약도에 따라 생산량 변화에 차이가 있었는지 살펴본 뒤, 정량적 공간 균형 경제학 모형을 추정한 결과, 대북제재가 북한의 제조업생산을 12.9%, 실질 소득을 15.3% 감소시킨 것으로 파악됐다. 또한 모형을 통해 북한의 모든 수입과 수출을 차단하는 극단적인 제재가 가해지는 가상 시나리오를 분석한 결과, 북한의 제조업 생산량이 43% 감소할 것으로 예측됐다.
또한, 이번 무역제재의 영향으로 평양을 제외한 다섯개 대도시 (신의주, 곽산, 원산, 회령, 함흥) 장마당에서 판매되는 수입금지 상품의 가격이 평균적으로 38% 오른것을 확인할 수 있었다. (그림 3) 평양에서는 이 같은 급격한 가격 상승이 관찰되지 않았는데 이는 북한 당국이 제재로 인한 평양 주민의 동요를 방지하기 위해 장마당 가격을 통제하였을 것으로 저자들은 분석하였다. 반면 수출금지 상품의 경우 장마당 가격이 다소 하락하거나 큰 변화가 없는 것으로 나타났다.
연구에 참여한 KAIST 경영대학 기술경영학부 김지희 교수는 “이번 연구는 무역 제재가 북한 경제에 미친 영향을 신뢰할 수 있는 데이터를 통해 정량적으로 추정하고, 또한 제재의 경제적 영향을 분석할 수 있는 방법론을 제시한다는 점에서 의미가 있다”며 “앞으로 이러한 방법론을 다른 제재 국가에도 적용하여 경제적 피해를 추정해 보고, 제재 국가의 경제적 대응에 관한 일반적인 분석도 할 수 있을 것”이라고 말했다.
이번 연구 결과는 `국제경제학 저널(Journal of International Economics)'에 지난 11월 게재됐다. (논문명: The economic costs of trade sanctions: Evidence from North Korea, 무역 제재의 경제적 비용: 북한 사례를 바탕으로)
논문링크: https://www.sciencedirect.com/science/article/abs/pii/S0022199623000995
2023.12.13
조회수 5470
-
KI House, 2023 대전 자원봉사 우수 수요처 선정
우리 대학 국제협력처 국제교원및학생지원팀에서 운영하는 KAIST International House(이하 KI House)가 (사)대전광역시 자원봉사센터에서 주관한 2023 대전 자원봉사자의 날 기념식에서 '올해의 자원봉사 우수 수요처'로 선정되어 대전광역시장 표창을 받았다.
KI House는 교내 외국인 교원 및 학생들이 한국 생활에 적응하는 것을 돕기 위해 2004년 설립돼 2020년 10월에는 행정안전부로부터 자원봉사 포털 인증기관으로 등록됐다. 설립 19주년을 맞은 현재 한국어 강사 자격증이나, 교육부 발급 정교사 자격증 또는 관련 학력을 지닌 순수 자원봉사자 100여 명이 KI House를 위해 활동하고 있다.
우리 대학 외국인 교원 및 학생들을 대상으로 하는 1:1 한국어 맞춤 교육을 비롯해 한국의 문화와 정서를 알아갈 수 있는 고유 명절(설 및 추석) 체험행사, 한국문화지 탐방 및 한국어 말하기 대회 등의 정규 프로그램을 운영하고 있으며, 기타 교실, TOPIK(한국어능력시험) Class, 토론반 등 다양한 방학 프로그램도 개설되어 있다.
특히, 지난 2022년 8월 (재)독도 재단이 주최한 전국 외국인 유학생 '독도사랑 한국어 말하기 대회'에 참여해 최우수상과 지도 교사들에게 주는 우수 지도자상을 수상했다. 이주영 국제교원및학생지원팀장은 "KI House에 자원봉사로 참여해주시는 선생님들의 순수한 노력을 격려해주는 것 같아 이번 표창이 더욱 뜻깊다"라고 소감을 전했다. 이 팀장은 이어 "앞으로도 선생님들과 함께 우리 대학의 외국인 교원 및 학생들의 한국어 능력 향상은 물론 한국 사회와 문화에 잘 적응할 수 있도록 돕는 역할에 최선을 다하겠다"라고 덧붙였다.
2023.12.12
조회수 7043
-
오펜하이머 같은 20대 박사 양성한다
우리 대학이 대학 학사과정 입학 후 7년 만에 박사학위를 취득할 수 있는 '3+4 TUBE(가칭, 이하 튜브) 프로그램'을 추진한다. 20대 박사를 특별 육성하기 위해 학사과정과 석박사통합과정이 연결되어 있다는 의미로 '튜브(TUBE)'라고 이름 붙인 이 프로그램은 학사 3년 과정을 포함해 총 7년 만에 박사학위를 받는 모델로 설계됐다. 최단 시간에 박사급 연구자로 성장·발전할 수 있는 경력경로를 제시하는 패스트 트랙(Fast Track)이다. 영재학교나 과학고의 영재교육 과정을 거쳐 만 18세에 KAIST에 입학한 학생이 튜브 프로그램을 활용하면 만 24세에 박사학위 취득이 가능해진다.
김용현 입학처장은 "유명한 물리학자인 오펜하이머와 파인만이 각각 23세, 24세에 박사학위를 취득한 사례처럼 우리도 이제 K-과학영재교육을 통해 24세 박사학위자를 배출할 수 있는 길이 열렸다"라며 의의를 강조했다.
튜브 프로그램은 학사과정 3학기나 4학기를 이수하고 일정 수준의 성적을 보유한 최상위 학생을 대상으로 한다. 선발된 학생은 밀착 지도 교수가 배정되는 등 특별한 혜택과 관리를 받게 된다. 학사 3학년인 연계과정 1년 차에는 기존 제도와는 다르게 대학원 과목을 자유롭게 수강할 자격이 부여된다. 이렇게 취득한 학점은 학사과정 졸업 이수학점을 채우는 것과 동시에 해당 과목의 대학원 과정 학점으로 동시에 인정된다. 또한, 대학원 연구실에 소속돼 기본적인 연구 활동을 수행하면서 각 학과 기준에 따라 박사진입에 필요한 추가적인 요건을 충족하게 된다. 이러한 과정을 거친 학생은 학사학위 취득 이후 곧바로 박사과정으로 진입해 이후 일반적인 석박사통합과정과 동일하게 박사학위 취득 과정을 밟게 될 예정이다.
병역 미필 남학생의 경우 박사 3년 차에 전문연구요원으로 편입될 수 있어, 20대 중반에 박사학위와 병역을 마치고 창업·취업·박사후연구과정 등 과학기술 분야에서 본인의 꿈을 마음껏 펼칠 수 있게 된다.
국내 타 대학에서도 학위 취득 기간을 단축해 우수한 학생을 조기에 상위과정으로 진입시키는 목적으로 연계과정을 운영하고 있다. 하지만, 우리 대학 튜브 프로그램의 핵심은 연계과정 1년 차에 학사과정 마무리와 박사과정 진입이 동시에 이뤄진다는 차별점에 있다. 속진 교육 제도를 시행해 온 기존의 풍부한 경험과 과학고나 영재학교 출신 학생이 타 대학보다 많다는 학교 특성을 적극적으로 반영한 결과다.
아울러, 영재교육 과정에서 선이수학점제(Advanced Placement, AP) 등으로 대학의 기초 교과목을 이수한 상태로 입학한 학생들이 튜브 프로그램을 효과적으로 활용하게 되면 선학점이수제도의 실효성을 높일 수 있다. 이를 통해 KAIST 교육 과정과의 연계성을 크게 강화하는 등 과학영재 발굴 육성 전략 차원에서도 효과를 얻을 수 있을 것으로 기대된다.
우리 대학은 프로그램 도입을 희망하는 학과를 중심으로 빠르면 2024년에 선발 절차를 거친 후 2025년부터 본격적으로 연계과정을 시작할 계획이다. 과학고나 영재학교 출신이 아니더라도 충분한 동기부여가 되어 있는 재학생이라면 누구나 튜브 프로그램의 혜택을 누릴 수 있도록 운영할 방침이다. 이도헌 교무처장은 "튜브 프로그램은 학령 인구 감소 시대에 연구에 흥미와 재능이 있는 우수한 과학기술 인재들이 복잡한 절차 없이 KAIST에서 최대한 빠르게 훌륭한 연구자로 성장하는 새로운 길이 될 것"이라고 설명했다.
2023.12.12
조회수 7357
-
K-약용식물에서 세 단계만에 분자연금술 뚝딱
K-약용식물 추출물에서 단 세 단계 만에 퇴행성 신경질환 등 난치성 신경질환 치료제로 개발가능한 물질인 ‘수프라니딘 B’를 합성하는 ‘분자 연금술’에 성공하여 화제다.
우리 대학 화학과 한순규 교수 연구팀이 국내 자생 ‘광대싸리’에 극미량 존재하는 고부가가치 천연물을 생체모방 전략을 통해 쉽게 얻을 수 있는 물질로부터 간단하게 합성하는 방법을 개발했다고 1일 밝혔다.
`세큐리네가 알칼로이드'는 국내 자생 약용식물인 ‘광대싸리’에서 발견되는 천연물 군으로, 항암 및 신경돌기 성장 촉진 등 다양한 약리 활성을 보여 수십 년간 합성화학계의 관심을 받아왔다.
이들 물질 군에는 기본 골격으로부터 산화되거나 사슬처럼 연결된 형태를 갖는 100여 종의 초복잡 천연물들이 존재하는데, 상대적으로 간단한 기본 골격체의 합성은 잘 정립되어 있었던 반면, 초복잡 화합물의 합성은 난제로 남아 있었다.
그 중 `수프라니딘(suffranidine) B'도 초복잡 세큐리네가 천연물 중의 하나로, 신경세포의 신경돌기 성장을 촉진해, 퇴행성 신경질환이나 신경 절단 등 현재는 난치성인 신경질환의 치료제로 기대되는 물질이다. 그러나 식물 1 킬로그램(kg)당 추출량이 0.4 밀리그램(mg)에 그칠 정도로 극히 적고 정제 또한 어려워 추가적인 연구에 제한점이 많았다.
한 교수 연구팀은 광대싸리에서 쉽게 대량으로 추출할 수 있는 기본골격을 갖는 세큐리네가 천연물인 알로세큐리닌(allosecurinine)과 시중에서 값싸게 구할 수 있는 누룩산(kojic acid) 유래 물질로부터 단 세 단계 만에 수프라니딘 B를 합성하는 방법을 개발했다.
이번 연구는 수프라니딘 B의 세계 최초 합성으로 쉽게 구할 수 있는 물질로부터 고부가가치 화합물을 간단하게 만들어 낸 일종의 `분자 연금술'이라 볼 수 있다. 수프라니딘 B와 같이 복잡한 천연물을 이렇게 짧은 과정으로 합성해 낸 사례는 몹시 드물다.
생체모방 합성(biomimetic synthesis)은 자연이 천연물을 합성하는 과정(생합성)을 모방해 복잡한 천연물을 합성하는 연구 방식이다. 합성 과정에서 생합성 경로에 존재할 것으로 여겨지는 중간체들의 화학적 반응성을 탐구할 수 있으므로, 해당 물질의 생합성 경로를 더욱 깊게 이해할 기회를 제공한다. 세큐리네가 알칼로이드는 1956년 최초로 발견되었으나 현재까지도 생합성 경로가 밝혀지지 않은 상태다.
한 교수는 "이번 연구로 수프라니딘 B를 간단하게 생산할 수 있게 되었을 뿐 아니라 초복잡 세큐리네가 천연물의 생합성에 대한 이해 또한 높일 수 있었다ˮ며 "고부가가치 국내 자생 약용식물을 합성화학적으로 또는 합성생물학적으로 생산할 수 있는 학문적 토대를 마련했다ˮ고 밝혔다.
KAIST 화학과 강규민 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 화학 분야 저명 국제 학술지인 `미국화학회지(Journal of the American Chemical Society)' 지난 11월 2일 자에 게재됐다. (논문명 : Synthesis of Suffranidine B)
한편 이번 연구는 KAIST의 도약연구(UP) 및 한국연구재단의 기초연구사업(중견연구)등의 지원을 통해 이뤄졌다.
2023.12.01
조회수 8366
-
글로벌 인공지능반도체 인재 육성 본격화
우리 대학이 28일 오후 대전 본원 정보전자공학동에서 '인공지능반도체대학원 개원식'을 열었다.
인공지능반도체대학원(책임교수 유회준)은 지난 5월 과학기술정보통신부의 인공지능반도체 분야 석·박사 고급인재 양성사업에 선정돼 설립됐다. 과기부로부터 연 30억 원, 대전광역시에서 연 9억 원을 지원 받는다. 올 가을학기부터 학사 운영을 시작해 12명의 석·박사 과정 학생이 재학 중이며, 향후 5년간 150명의 인재를 배출할 계획이다.
이날 열린 개원식에는 이광형 총장, 이장우 대전광역시장, 더불어민주당 조승래 의원(대전 유성구 갑), 강도현 과기정통부 정책실장, 전성배 정보통신기획평가원장, 방승찬 ETRI 원장과 산학 협력기업 관계자 등이 함께 참석해 현판 제막식을 진행했다.
유회준 책임교수는 "KAIST는 반도체 공정과 설계 등 전 분야에 걸쳐 세계적인 경쟁력을 갖춘 교육과 연구 여건이 완비되었다"라고 전했다.2008년부터 인공지능반도체 기술 개발을 시작한 우리 대학은 오랜 시간 축적해온 독보적인 경험을 바탕으로 인재 양성에 특화된 교육·연구 프로그램을 마련했다.▴인공지능 가속을 위한 회로 및 아키텍처 설계 ▴인공지능반도체 운용 기술 및 구동 프레임워크 개발 ▴초고속·고효율·대규모 인공지능을 위한 뇌과학 기반 도전적인 연구를 수행 등 크게 세 가지 분야의 전공 커리큘럼을 운영 중이다.
또한, '복수지도 제도'가 도입된다. 학생들이 복수의 지도교수를 자유롭게 선택해 분야를 초월한 융합 연구를 수행하도록 돕는 제도다. 인공지능반도체 설계 및 제작을 비롯해 CAD(컴퓨터지원설계), PIM 반도체 관련 아키텍처, 소자, 소프트웨어, 디지털·아날로그 지식재산권(IP)등 다양한 분야를 아우르는 21명의 교원이 참여하고 있다.
국내·외 유수 대학 및 기업과의 공동 연구도 진행된다. 삼성전자, SK 하이닉스 등 글로벌 대표기업과 인공지능반도체 분야를 새롭게 이끌어가고 있는 다수의 스타트업, 한국전자통신연구원 등의 연구기관과 산학협력 컨소시엄을 구성해 인공지능반도체 설계 역량을 높이면서도 산업 현장의 수요를 반영한 실용화 연구를 강화할 방침이다.
세계적이고 도전적인 연구를 수행할 수 있는 환경도 조성한다. 미국 컬럼비아 대학교·코넬 대학교, 스위스 취리히연방공과대학교, 일본 동경대학교 등의 대학의 연구 교류 및 엔비디아(NVIDIA), 메타(Meta), 구글(Google), 애플(Apple) 등 실리콘밸리의 인공지능반도체 기업과 협력한 글로벌 인턴십 프로그램이 제공된다. 이광형 총장은 "인공지능반도체대학원 개원으로 KAIST의 우수한 교육·연구 인프라를 기반으로 반도체 공정과 설계 등 반도체 전 분야에서 세계를 선도할 인재를 양성할 수 있을 것으로 기대한다"라고 밝혔다.
2023.11.28
조회수 6762
-
인공지능으로 북한 등 경제지표 추정하다
유엔기구(UN)의 지속가능발전목표(SDGs)에 따르면 하루 2달러 이하로 생활하는 절대빈곤 인구가 7억 명에 달하지만 그 빈곤의 현황을 제대로 파악하기는 쉽지 않다. 전 세계 중 53개국은 지난 15년 동안 농업 관련 현황 조사를 하지 못했으며, 17개국은 인구 센서스(인구주택 총조사)조차 진행하지 못했다. 이러한 데이터 부족을 극복하려는 시도로, 누구나 웹에서 받아볼 수 있는 인공위성 영상을 활용해 경제 지표를 추정하는 기술이 주목받고 있다.
우리 대학 차미영-김지희 교수 연구팀이 기초과학연구원, 서강대, 홍콩과기대(HKUST), 싱가포르국립대(NUS)와 국제공동연구를 통해 주간 위성영상을 활용해 경제 상황을 분석하는 새로운 인공지능(AI) 기법을 개발했다고 21일 밝혔다. 연구팀이 주목한 것은 기존 통계자료를 기반으로 학습하는 일반적인 환경이 아닌, 기초 통계도 미비한 최빈국(最貧國)까지 모니터링할 수 있는 범용적인 모델이다.
연구팀은 유럽우주국(ESA)이 운용하며 무료로 공개하는 센티넬-2(Sentinel-2) 위성영상을 활용했다. 연구팀은 먼저 위성영상을 약 6제곱킬로미터(2.5×2.5㎢)의 작은 구역으로 세밀하게 분할한 후, 각 구역의 경제 지표를 건물, 도로, 녹지 등의 시각적 정보를 기반으로 AI 기법을 통해 수치화했다.
이번 연구 모델이 이전 연구와 차별화된 점은 기초 데이터가 부족한 지역에도 적용할 수 있게끔 인간이 제시하는 정보를 인공지능의 예측에 반영하는 `인간-기계 협업 알고리즘'에 있다. 즉, 인간이 위성영상을 보고 경제 활동의 많고 적음을 비교하면, 기계는 이러한 인간이 제공한 정보를 학습하여 각각의 영상자료에 경제 점수를 부여한다. 검증 결과, 기계학습만 사용했을 때보다 인간과 협업할 경우 성능이 월등히 우수했다.
이번 연구를 통해 연구팀은 기존 통계자료가 부족한 지역까지 경제분석의 범위를 확장하고, 북한 및 아시아 5개국(네팔, 라오스, 미얀마, 방글라데시, 캄보디아)에도 같은 기술을 적용하여 세밀한 경제 지표 점수를 공개했다. (그림 1) 이 연구가 제시한 경제 지표는 기존의 인구밀도, 고용 수, 사업체 수 등의 사회경제지표와 높은 상관관계를 보였으며, 데이터가 부족한 저개발국가에 적용 가능함을 연구팀은 확인했다.
이러한 변화탐지를 북한에 적용한 결과, 대북 경제제재가 심화된 2016년과 2019년 사이에 북한 경제에서 세 가지 경향을 발견할 수 있었다. 첫째, 북한의 경제 발전은 평양과 대도시에 더욱 집중되어 도시와 농촌 간 격차가 심화됐다. 둘째, 경제제재와 달러 외환의 부족을 극복하기 위해 설치한 관광 경제개발구에서는 새로운 건물 건설 등 유의미한 변화가 위성영상 이미지와 연구의 경제 지표 점수 변화에서 드러났다. 셋째, 전통적인 공업 및 수출 경제개발구 유형에서는 반대로 변화가 미미한 것으로 확인됐다.
연구에 참여한 우리 대학 전산학부·IBS 데이터사이언스그룹 CI 차미영 교수는 "전산학, 경제학, 지리학이 융합된 이번 연구는 범지구적 차원의 빈곤 문제를 다룬다는 점에서 중요한 의미가 있으며, 이번에 개발한 인공지능 알고리즘을 앞으로 이산화탄소 배출량, 재해재난 피해 탐지, 기후 변화로 인한 영향 등 다양한 국제사회 문제에 적용해 볼 계획이다ˮ 라고 말했다.
이 연구에는 경제학자인 우리 대학 기술경영학부 김지희 교수, 서강대 경제학과 양현주 교수, 홍콩과기대 박상윤 교수도 함께 참여하였다. 이들은 “이 모델은 저비용으로 개발도상국의 경제 상황을 상세하게 확인할 수 있어 국제개발협력(ODA) 사업에 도움을 줄 수 있을 것으로 예상된다”며 “이번 연구가 선진국과 후진국 간의 데이터 격차를 줄이고 유엔과 국제사회의 공동목표인 지속가능한 발전을 달성하는 데 기여할 수 있기를 바란다ˮ고 밝혔다.
위성영상과 인공지능을 활용한 SDGs 지표의 개발과 이의 정책적 활용은 국제적인 주목을 받고 있는 기술 분야 중 하나이며 한국이 앞으로 주도권을 가지고 이끌 수 있는 연구 분야이다. 이에 연구팀은 개발한 모델 코드를 무료로 공개하며, 측정한 지표가 여러 국가의 정책 설계 및 평가에 유용하게 사용될 수 있도록 앞으로도 기술을 개선하고 매해 새롭게 업데이트되는 인공위성 영상에 적용하여 공개할 계획이다.
한편 이번 연구 결과는 전산학부 안동현 박사과정, 싱가포르 국립대 양재석 박사과정이 공동 1저자로 국제 학술지 네이처 출판 그룹의 `네이처 커뮤니케이션즈(Nature Communications)'에 지난 10월 26일 자 게재됐다. (논문명: A human-machine collaborative approach measures economic development using satellite imagery, 인간-기계 협업과 위성영상 분석에 기반한 경제 발전 측정).
논문링크: https://www.nature.com/articles/s41467-023-42122-8
2023.11.21
조회수 9739
-
부드러워져 재사용 불가능한 주사바늘 개발
정맥주사는 혈관에 약물을 직접 주입하는 방법으로 신속한 효과를 유도하고 지속적인 약물 투여를 통한 치료가 가능해 범세계적으로 환자치료에 통용되고 있다. 하지만 금속이나 플라스틱 등 딱딱한 소재로 제작된 주사바늘은 부드러운 생체조직에 손상과 염증을 발생시킬 수 있다. 또한 비용 절감을 위한 비윤리적 주사바늘 재사용을 가능하게 하며, 이는 인체면역 결핍 바이러스(HIV), B형/C형 간염 바이러스 등 심각한 혈액 매개 질환 감염을 초래하기도 한다. 이는 전 세계적인 문제이며, 감염관리의 중요성으로 인해 세계보건기구(WHO)는 재사용이 불가능한 스마트 주사기 개발과 사용을 장려하고 있다.
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 의과학대학원 정원일 교수 연구팀과 공동 연구를 통해 환자 건강증진 및 의료진 안전을 도모할 수 있는 가변 강성 정맥 주사바늘을 개발하는 데 성공했다고 13일 밝혔다.
이번에 개발된 기술은 체온에 의해 주사바늘이 유연해지는 특성을 통해 정맥에 약물 주입 중 주사 삽입 부위의 자유로운 움직임을 보장함과 동시에 주사바늘에 의한 혈관 벽 손상 방지를 도모할 수 있을 것으로 예상된다. 또한 사용 후 찔림 사고나 비윤리적 주사기 재사용에 따른 혈액 매개 질환 감염 문제를 예방할 수 있을 것이라 기대된다.
전기및전자공학부 카렌-크리스티안 아그노(Karen-Christian Agno) 박사과정 연구원과 의과학대학원 양경모 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)' 10월 30일 字에 게재됐다. (논문명 : A temperature-responsive intravenous needle that irreversibly softens on insertion)
연구팀은 액체금속의 일종인 갈륨(Gallium)을 이용하여 주사바늘 구조를 만들고 이를 생체적합성 폴리머로 코팅해 가변 강성 정맥 주사바늘을 제작했다. 딱딱한 상태의 주사바늘은 상용 정맥 카테터와 비슷한 수준의 생체조직 관통력을 갖는다. 하지만 체내 삽입 후, 갈륨의 액체화로 인해 조직과 같이 부드러운 상태로 변해 혈관 손상 없이 안정적인 약물 전달이 가능하다. 한 번 사용한 주사바늘은 갈륨의 과냉각 현상에 의해 상온에서도 부드러운 상태를 유지해 바늘 찔림 사고나 재사용 문제를 원천적으로 방지할 수 있다.
연구팀은 개발된 정맥 주사바늘의 약물 전달 기능과 생체적합성을 검증하고자 실험 쥐를 대상으로 동물실험을 진행했다. 이식된 가변 강성 정맥 주사바늘은 딱딱한 상용 금속 바늘이나 플라스틱 카테터에 비해 훨씬 낮은 염증 반응을 보여 연구팀은 우수한 생체적합성을 확인했다. 또한 상용 주사바늘과 같이 안정적으로 약물을 전달할 수 있음을 확인했다.
아울러 가변 강성 정맥 주사바늘은 박막형 온도 센서를 탑재할 수 있도록 디자인됐다. 이를 통해 실시간으로 환자의 심부체온을 모니터링하는 것이 가능하며, 또한 잘못된 주사바늘 위치로 인한 혈관이 아닌 다른 조직으로의 약물 누수 감지도 가능해 환자에게 더 나은 의료서비스를 제공할 수 있다.
이번 연구를 주도한 정재웅 교수는 "개발된 가변 강성 정맥 주사바늘은 기존의 딱딱한 의료용 바늘로 인한 문제를 극복해 환자와 의료진 모두의 안전을 보장하고, 주사바늘 재사용으로 인한 감염 문제를 해결할 수 있다는 점에서 가치가 매우 크다”라고 말했다.
한편 이번 연구는 한국연구재단이 추진하는 중견연구자지원사업, 생체신호센서융합기술개발사업, 리더연구자지원사업의 지원을 받아 수행됐다.
2023.11.13
조회수 11535
-
예종철 교수 연구팀, 삼성휴먼테크 논문대상 신호처리분야 금상 수상
우리 대학 김재철AI대학원 예종철 교수팀이 `확산모델 (diffusion model)의 사후 샘플링(posterior sampling)을 이용한 일반적인 역문제 해결 기법'으로 제 29회 삼성휴먼테크논문대상에서 신호처리 분야 금상을 수상했다고 밝혔다.
삼성휴먼테크논문대상은 과학기술 저변 확대와 과학 인재 양성을 위해 삼성전자가 1994년 제정한 논문상으로, 매년 2,000편 가량의 논문 중 서면 및 발표 심사를 거쳐 창의성, 논리성, 실용성, 발전성이 뛰어난 논문을 선정하여 수여되는 상이다.
바이오및뇌공학과 박사과정 졍형진, 김정솔 학생이 공동 1저자로 참여한 이 논문은, 확산 모델과 사후 샘플링을 결합하여 일반적인 역문제에 대한 새로운 관점과 해결방법을 제시하였고, 그 실용성과 독창성을 인정받아 대학부 신호처리 분야 수상작 7편 중 1위로 금상을 수상하였다.
역문제는 영상을 획득하는 과정에서 이미징 시스템의 특성과 잡음의 영향으로 망가진 측정값으로부터 실제 신호를 복원하는 문제로 정의된다. 이러한 문제는 영상 화질 개선부터 위상 복원을 통한 세포 구조 시각화와 같은 다양한 과학 분야에서 중요성과 실용성을 가지며, 수십 년간 지속적으로 연구되어 왔다. 과거의 인공지능 및 딥러닝 알고리즘은 이미징 시스템이 선형이며 잡음이 없는 경우를 가정하여 역문제를 효과적으로 해결하였으나, 이러한 가정은 현실 세계에서의 상황과 비교하여 훨씬 단순화된 형태였다.
이 연구에서는 처음으로 확산 모델을 이용해 사후 샘플링을 진행하는 방법으로 역문제를 해결하였는데, 이는 확산 모델이 생성하는 중간 이미지로 측정값을 근사하고, 실제 측정값과의 차이가 줄어들도록 중간 이미지를 보정하는 방식으로 구현된다.
이를 통해 이미징 시스템이 선형 및 비선형인 경우, 그리고 이미징 시스템에서 흔히 발생하는 가우시안 잡음과 푸아송 잡음이 존재하는 경우에 대한 일반적인 역문제 해결이 가능함을 입증하였다. 나아가 개발된 기술은 여러 종류의 역문제에 대한 개별적 학습을 필요로 하지 않는 특성을 가지며, 이는 논문의 실용성을 높이고, 이전의 연구들과 차별성을 지니게 한다.
정형진, 김정솔 바이오및뇌공학과 박사과정 학생은 “큰 규모의 논문대회에서 연구의 내용을 인정받아 기쁘고, 좋은 논문을 작성할 수 있도록 지도해주신 예종철 교수님께 감사하다” 고 소감을 밝혔다. 또한, 알고리즘의 성능과 효율성을 높이는 연구를 이어나가 역문제의 해결이 필요한 다양한 과학 분야들에 기여하고 싶다는 희망을 전했다.
논문명: Diffusion Posterior Sampling for General Noisy Inverse Problems
2023.11.07
조회수 6150
-
인공지능 챗봇 이미지 데이터 훈련 비용 최소화하다
최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. GPT와 같은 거대 언어 모델을 훈련하기 위해서는 수백 대의 GPU와 몇 주 이상의 시간이 필요하다고 알려져 있다. 따라서, 심층신경망 훈련 비용을 최소화하는 방법 개발이 요구되고 있다.
우리 대학 전산학부 이재길 교수 연구팀이 심층신경망 훈련 비용을 최소화할 수 있도록 훈련 데이터의 양을 줄이는 새로운 데이터 선택 기술을 개발했다고 2일 밝혔다.
일반적으로 대용량의 심층 학습용 훈련 데이터는 레이블 오류(예를 들어, 강아지 사진이 `고양이'라고 잘못 표기되어 있음)를 포함한다. 최신 인공지능 방법론인 재(再)레이블링(Re-labeling) 학습법은 훈련 도중 레이블 오류를 스스로 수정하면서 높은 심층신경망 성능을 달성하는데, 레이블 오류를 수정하기 위한 추가적인 과정들로 인해 훈련에 필요한 시간이 더욱 증가한다는 단점이 있다. 한편 막대한 훈련 시간을 줄이려는 방법으로 중복되거나 성능 향상에 도움이 되지 않는 데이터를 제거해 훈련 데이터의 크기를 줄이는 핵심 집합 선별(coreset selection) 방식이 큰 주목을 받고 있다. 그러나 기존 핵심 집합 선별 방식은 훈련 데이터에 레이블 오류가 없다고 가정한 표준 학습법을 위해 개발됐고, 재레이블링 학습법을 위한 핵심 집합 선별 방식에 관한 연구는 부족한 실정이다.
이재길 교수팀이 개발한 기술은 레이블 오류를 스스로 수정하는 최신 재레이블링 학습법을 위해 핵심 집합 선별을 수행하여 심층 학습 훈련 비용을 최소화할 수 있도록 해준다. 따라서, 레이블 오류가 포함된 현실적인 훈련 데이터를 지원하므로 실용성이 매우 높다.
또한 이 교수팀은 특정 데이터의 레이블 오류 수정 정확도가 해당 데이터의 이웃 데이터의 신뢰도와 높은 상관관계가 있음을 발견했다. 즉, 이웃 데이터의 신뢰도가 높으면 레이블 오류 수정 정확도가 커지는 경향이 있다. 이웃 데이터의 신뢰도는 심층신경망의 충분한 훈련 전에도 측정할 수 있으므로, 각 데이터의 레이블 수정 가능 여부를 예측할 수 있게 된다. 연구팀은 이러한 발견을 기반으로 전체 훈련 데이터의 총합 이웃 신뢰도를 최대화하는 데이터 부분 집합을 선별해 레이블 수정 정확도와 일반화 성능을 최대화하는 `재레이블링을 위한 핵심 집합 선별'을 제안했다. 총합 이웃 신뢰도를 최대화하는 부분 집합을 찾는 조합 최적화 문제의 효율적인 해법을 위해 총합 이웃 신뢰도를 가장 증가시키는 데이터를 차례차례 선택하는 탐욕 알고리즘(greedy algorithm)을 도입했다.
연구팀은 이미지 분류 문제에 대해 다양한 실세계의 훈련 데이터를 사용해 방법론을 검증했다. 그 결과, 레이블 오류가 없다는 가정에 따른 표준 학습법에서는 최대 9%, 재레이블링 학습법에서는 최대 21% 최종 예측 정확도가 기존 방법론에 비해 향상되었고, 모든 범위의 데이터 선별 비율에서 일관되게 최고 성능을 달성했다. 또한, 총합 이웃 신뢰도를 최대화한 효율적 탐욕 알고리즘을 통해 기존 방법론에 비해 획기적으로 시간을 줄이고 수백만 장의 이미지를 포함하는 초대용량 훈련 데이터에도 쉽게 확장될 수 있음을 확인했다.
제1 저자인 박동민 박사과정 학생은 "이번 기술은 오류를 포함한 데이터에 대한 최신 인공지능 방법론의 훈련 가속화를 위한 획기적인 방법ˮ 이라면서 "다양한 데이터 상황에서의 강건성이 검증됐기 때문에, 실생활의 기계 학습 문제에 폭넓게 적용될 수 있어 전반적인 심층 학습의 훈련 데이터 준비 비용 절감에 기여할 것ˮ 이라고 밝혔다.
연구팀을 지도한 이재길 교수도 "이 기술이 파이토치(PyTorch) 혹은 텐서플로우(TensorFlow)와 같은 기존의 심층 학습 라이브러리에 추가되면 기계 학습 및 심층 학습 학계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다.
우리 대학 데이터사이언스대학원에 재학 중인 박동민 박사과정 학생이 제1 저자, 최설아 석사과정, 김도영 박사과정 학생이 제2, 제3 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2023'에서 올 12월 발표될 예정이다. (논문명 : Robust Data Pruning under Label Noise via Maximizing Re-labeling Accuracy)
한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(2020-0-00862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다.
2023.11.02
조회수 6874
-
탁지훈 박사과정, 2023 구글 PhD 펠로우 선정
우리 대학 김재철AI대학원 박사과정 탁지훈 학생(지도교수 신진우)이 ‘2023 구글 PhD 펠로우’에 선정됐다.
구글 PhD 펠로우십은 컴퓨터 과학과 관련된 유망 연구 분야에서 우수한 성과를 낸 대학원생을 지원하는 장학 프로그램으로 올해는 전 세계에서 67명이 선발됐다. 선정된 펠로우에게는 1만 달러의 장학금과 구글 각 분야 전문가 멘토와의 일대일 연구 토의, 피드백 등의 혜택이 주어진다.
탁지훈 학생은 기계학습(Machine Learning) 분야에서 메타학습(Meta-learning)과 뉴럴필드(Neural Field) 분야의 탁월한 연구 성과를 인정받아 선정되었다. 기계학습 분야에서는 총 19명의 학생이 선발되었으며 아시아 대학에서는 탁지훈 학생이 유일하다.
탁지훈 학생은 특히 기존 뉴럴필드 학습의 한계점들을 새로운 메타학습 방법론을 제안하여 효과적으로 극복한 것으로 평가받는다. 구체적으로는 뉴럴필드 학습에서의 세 가지 비효율적 요소인 학습 시간, 학습 메모리 그리고 저장 공간을 효율적인 메타학습을 제안하여 효율화 하였으며, 이를 활용한 데이터 형태에 구애받지 않은 데이터 압축 기술 역시 제안하였다. 이러한 다양한 연구들은 NeurIPS, ICML, ICLR 등 기계학습 및 딥러닝 분야의 최고 학회에 다수 선정되었다. 또한 그는 구글 딥마인드 연구진들과 협력하여 메타학습과 뉴럴필드 연구를 수행한 바 있다.
시상식은 8월 29일부터 8월 30일 양일간 가상으로 열린 구글 PhD 펠로우십 서밋(Google PhD Fellowship Summit)에서 진행됐으며, 수상자 리스트는 구글 홈페이지에 게시되어있다.
구글은 KAIST 교수진과 학생을 대상으로 연구비 지원(Research Grant), 신진 연구자 지원(Research Scholar), 구글 클라우드 플랫폼 크레딧(GCP Credits), 익스플로어CSR(exploreCSR), PhD 펠로우십(PhD Fellowship), 학생 학회 후원(Student Travel Grants) 등 다양한 산학협력 프로그램으로 지원을 제공했다.
(홈페이지 주소 : https://research.google/outreach/phd-fellowship/recipients)
2023.10.31
조회수 7157