< (왼쪽부터) 뇌인지과학과 이상완 교수, 양민수 박사과정 >
뇌의 맥락 추론 방식이 챗지피티 같은 대규모 인공지능 모델과 어떻게 다를까? 우리 연구진이 ‘뇌처럼 생각하는 인공지능’기술로서 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간이나 동물과 유사하게 스스로 가설을 세워 검증하는 신개념 인공지능 모델을 개발하는데 성공했다.
우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 생명과학과 정민환 교수(IBS 시냅스 뇌질환 연구단 부연구단장) 연구팀이 동물이 가설을 세워 일관된 행동 전략을 유지함과 동시에, 본인의 가설을 스스로 의심하고 검증하면서 상황에 빠르게 적응하는 새로운 강화학습 이론을 제시하고 뇌과학적 원리를 규명했다고 20일 밝혔다.
현재 상황에 맞게 행동의 일관성과 유동성 사이의 적절한 균형점을 찾아가는 문제를 ‘안정성-유동성의 딜레마(Stability-flexibility dilemma)’라 한다. 이를 위해서는 현재 본인의 판단이 맞는지를 계속 검증하고 수정할 수 있어야 한하는데 뇌과학 및 인공지능 분야에서 다양한 연구가 있었으나 아직까지 완벽한 해법이 알려진 바가 없다.
연구팀은 스스로 세운 가설을 바탕으로 다음 상황을 예측하고 확인하는 행동 패턴을 동역학적으로 프로파일링 할 수 있는 새로운 방식을 고안했고, 이를 바탕으로 전통적인 강화학습 이론과 최신 인공지능 알고리즘 모두 동물의 관련 행동을 제대로 설명하지 못한다는 것을 발견했다.
이어 연구팀은 동물의 현재 상황에 대한 가설을 세우고, 가설의 예측 오류를 바탕으로 행동 전략을 비대칭적으로 업데이트하는 새로운 적응형 강화학습 이론과 모델을 제안했다.
< 그림. 1. 가설 검증 뇌기반 인공지능 모델 개념도. 추정한 현재 맥락에 대한 의심을 스스로 검증하는 동적 프로세스를 표현함. 스스로의 의심을 확인하는 사건을 인지하는 경우 빠르게 새로운 가설을 받아들이는 학습과정을 설명하는 모델로써, 인간과 동물의 메타인지 기반 능력을 프로파일링하는데 활용할 수 있음. 이 모델은 최신 인공지능 모델 대비 최신 인공지능 모델 대비 최대 31%, 평균 15% 더 높은 설명력을 보임. >
최신 인공지능 모델은 효율적 문제 해결에 집중하다 보니 인간이나 동물의 행동을 잘 설명하지 못하는 경우가 많은 반면, 제안 모델은 예상치 못한 사건에 대한 동물의 행동을 최신 인공지능 모델 대비 최대 31%, 평균 15% 더 잘 예측함을 보였다.
특히, 이 결과는 기존 연구에서 발표된 네 가지 서로 다른 동물 실험 데이터(two-step task, two-armed bandit task, T-maze task, two-armed bandit task with MSN inactivation) 분석을 통해 일관성 있게 재현되었다.
연구팀은 더 나아가 중뇌 기저핵* 선조체**속 중간크기 가시뉴런***이 가설 기반 적응형 강화학습 과정에 관여함을 밝혔다. 직접 경로 가시뉴런들은 예상한 사건을 마주한 경험을, 간접 경로 가시뉴런들은 예상하지 못한 사건을 마주한 경험을 부호화해 행동 전략을 조절함을 보였다.
*기저핵(Basal Ganglia): 대뇌피질, 시상, 뇌간 등 운동 조절 및 학습하는 기능을 담당하는 뇌 부위
**선조체(Striatum): 기저핵의 일부로 가치 평가 및 강화학습 능력과 관련된 부위
***가시뉴런Medium Spiny Neuron, MSN): 선조체의 약 90%를 차지하는 대표적 신경세포로 신경활동을 억제하는 특징을 가지고 있음
본 연구 결과는 뇌의 맥락 추론 방식이 대규모 인공지능 모델과 근본적으로 다르다는 것을 보여준다. 챗지피티(ChatGPT)나 딥시크와 같은 인공지능 모델은 사용자 입력으로부터 맥락 정보를 추정하고 이를 바탕으로 필요한 전문가 시스템에 매칭하며 (딥시크 모델은 강화학습을 사용하여 매칭), 새로운 정보가 들어올 때까지는 이것이 맞다고 가정한다.
이와 달리 뇌는 스스로 추정한 맥락(가설)을 의심하고, 의심이 확인되는 즉시 새로운 맥락을 적극 받아들인다. 이는 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간과 유사한 추론엔진을 구성할 수 있는 새로운 방향성을 제시한다.
본 연구는 뇌과학-인공지능 융합연구로서, 실제 분야에 널리 활용될 수 있다. 예를 들어, 인간의 동역학적 행동 프로파일링 기술을 이용하면 개개인의 가설 수립, 검증 학습 능력 분석이 가능하므로, 맞춤형 교육 커리큘럼 디자인, 인사 및 인력관리 시스템, 인간-컴퓨터 상호작용 분야에 바로 적용할 수 있다.
제안된 적응형 강화학습 모델은 ‘뇌처럼 생각하는 인공지능’기술로서 인간-인공지능 가치 정렬 (Value alignment) 문제 해결에 활용될 수 있다. 또한 이 과정에 관여하는 것으로 알려진 기저핵 내 보상학습 회로와 관련된 중독이나 강박증과 같은 정신질환의 뇌과학적 원인 규명에 활용될 수 있다.
연구 책임자인 이상완 교수는 "이번 연구는 인공지능의 강화학습 이론만으로 설명할 수 없는 뇌의 가설 기반 적응학습 원리를 밝혀낸 흥미로운 사례ˮ라면서 "스스로 의심하고 검증하는 뇌과학 이론을 대규모 인공지능 시스템 설계와 학습 과정에 반영하면 신뢰성을 높일 수 있을 것ˮ이라고 말했다.
< 그림. 2. 가설을 세워 스스로 검증하는 능력을 동역학적으로 프로파일링하는 기술 >
뇌인지공학 프로그램 양민수 박사과정 학생이 1 저자, 생명과학과 정민환 교수가 공동 저자, 뇌인지과학과 이상완 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스 (Nature Communications)‘ 2월 20일자로 게재됐다. (논문명: Striatal arbitration between choice strategies guides few-shot adaptation) DOI: 10.1038/s41467-025-57049-5)
한편 이번 연구는 과학기술정보통신부 정보통신기획평가원 SW스타랩, 한계도전 R&D 프로젝트, 한국연구재단 중견연구자 및 KAIST 김재철AI대학원 사업 지원을 받아 수행됐다.
“처음에는 인공지능 조교(VTA)에 대한 기대가 크지 않았지만, 밤늦게 갑자기 궁금해진 개념을 질문했을 때도 즉각적으로 답을 받을 수 있어서 매우 유용했다”며 “특히 인간 조교에게 질문하기 망설여졌던 부분들도 부담 없이 물어볼 수 있었고, 오히려 더 많이 질문하면서 수업 이해도가 높아졌다”(수강생 양지원 박사과정 학생) 우리 대학 김재철AI대학원 최윤재 교수와 산업디자인학과 홍화정 교수 공동 연구팀이 대형 강의에서도 학생 개개인에게 맞춤형 피드백을 제공할 수 있는 ‘인공지능 조교(Virtual Teaching Assistant, 이하 VTA)’를 개발해 실제 강의에 성공적으로 적용했다고 5일 밝혔다. 이번 연구는 2024년 가을학기 석·박사과정 학생 477명이 수강한 김재철AI대학원의 ‘인공지능을 위한 프로그래밍’ 교과목에 VTA를 도입해, 그 효과와 실용 가능성을 실제 교육
2025-06-05짠 음식을 자주 섭취하는 식습관이 건강에 해롭다는 것은 널리 알려진 사실이다. 그런데 최근 KAIST 연구진은 짠 음식이 뇌종양까지 악화시킬 수 있다는 사실을 세계 최초로, “왜 나빠지는지", "무엇이 그 과정을 유도하는지", "어떤 유전자가, 어떤 단백질이 작용하는지"까지 분자적 인과관계를 입증해 주목받고 있다. 우리 대학 생명과학과 이흥규 교수 연구팀이 고염식이 장내 미생물 구성을 변화시키고, 이로 인해 증식이 증대된 미생물에 의해 분비되는 대사물질인‘프로피오네이트(propionate)‘가 장내에 과도하게 축적되어 뇌종양을 악화시킨다는 사실을 밝혀냈다. 연구팀은 뇌종양 마우스 모델을 이용한 실험에서 이 같은 사실을 입증했다. 마우스에게 4주간 짠 사료를 섭취하게 한 뒤 종양세포를 주입하자 일반식이 그룹에 비해 생존율이 크게 낮아지고 종양 크기가 증가하는 것을 확인했다. 이어 항생제로 장내 미생물을 제거하거나, 무균 마우스에 분변(고염사료 섭
2025-06-02우리 대학 화학과 한순규 교수 연구팀이 독일의 유서 깊은 학술 출판사 티메(Thieme)가 수여하는 2024 신렛(Synlett) 최우수 논문상(Synlett Best Paper Award 2024)을 수상했다고 30일 밝혔다. 티메는 매해 유기화학 분야 SCI 저널인 신렛에 출판된 논문 중 최우수 논문 1편을 선정해 최우수 논문상을 수여해왔다. 한순규 교수 연구팀은 지난 10여 년간 천연물 합성 연구에 집중하며 다양한 생리활성을 가지는 이차대사물의 효율적이고 독창적인 합성법을 개발했다. 특히 광대싸리나무에서 유래하는 초복잡 세큐리네가 천연물 합성분야에서는 세계적인 선도그룹으로 괄목할 만한 연구성과를 성취했다. 수상 논문에서 한순규 교수 연구팀은 세계 최초로 자연에서 극소량만 얻을 수 있는 희귀한 천연물인 4α-하이드록시알로세큐리닌과 세큐린진 F를 시중에 쉽게 구할 수 있는 시작 물질로부터 인공적으로 처음부터 끝까지 만들어내는 데 성공했다. 세큐리네가 천연물은
2025-05-30우리 대학 인공지능반도체대학원은 27일(화) 오전 대전 오노마 호텔에서 ‘제3회 한국인공지능시스템포럼(KAISF)’ 조찬 강연회를 성공적으로 개최하였다. 이번 강연회는 ‘휴머노이드 로봇의 혁명: 인간과 로봇의 공존 시대’를 주제로, 인공지능(AI)과 로봇 기술의 융합이라는 최신 이슈에 대한 깊이 있는 통찰을 제공하는 자리로 마련되었다. 총 60명의 산학 전문가가 참석한 가운데, LG전자 백승민 소장의 초청 강연은 현장 참석자들의 높은 관심과 호응을 이끌어냈다. 백승민 LG전자 소장은 이날 강연에서 AI 기술을 활용한 생활형 로봇의 진화, 생성형 AI를 접목한 자율지능 향상 사례, 그리고 로봇 플랫폼의 통합 가속화 전략 등을 중심으로 발표했다. 특히 인간과 자연스럽게 상호작용하는 휴머노이드 로봇의 서비스화 실증사례는 산업계 리더들에게 실질적인 인사이트를 제공하였다. 이어 “AI 기술은 이제 실제 로봇의 형태로 현실 공간
2025-05-27인공지능 분야에서 지식 체계나 데이터베이스를 그래프로 저장하고 활용하는 사례가 급증하지만, 일반적으로 복잡도가 높은 그래프 연산은 GPU 메모리의 제한으로 인해 매우 작은 규모의 그래프 등 비교적 단순한 연산만 처리할 수 있다는 한계가 있다. 우리 연구진이 25대의 컴퓨터로 2,000초가 걸리던 연산을 한 대의 GPU 컴퓨터로 처리할 수 있는 세계 최고 성능의 연산 프레임워크를 개발하는데 성공했다. 우리 대학 전산학부 김민수 교수 연구팀이 한정된 크기의 메모리를 지닌 GPU를 이용해 1조 간선 규모의 초대규모 그래프에 대해 다양한 연산을 고속으로 처리할 수 있는 스케줄러 및 메모리 관리 기술들을 갖춘 일반 연산 프레임워크(일명 GFlux, 지플럭스)를 개발했다고 27일 밝혔다. 연구팀이 개발한 지플럭스 프레임워크는 그래프 연산을 GPU에 최적화된 단위 작업인 ‘지테스크(GTask)’로 나누고, 이를 효율적으로 GPU에 배분 및 처리하는 특수한 스케줄링
2025-05-27