
< (왼쪽부터) 최양규 교수, 최성율 교수, 한준규 박사과정, 오정엽 박사과정 >
우리 대학 전기및전자공학부 최양규, 최성율 교수 공동연구팀이 인간의 뇌를 모방한 고집적 뉴로모픽 반도체를 개발했다고 5일 밝혔다.
뉴로모픽(neuromorphic) 하드웨어는, 인간의 뇌가 매우 복잡한 기능을 수행하지만 소비하는 에너지는 20와트(W) 밖에 되지 않는다는 것에 착안해, 인간의 뇌를 모방해 인공지능 기능을 하드웨어로 구현하는 방식이다. 뉴로모픽 하드웨어는 기존의 폰 노이만(von Neumann) 방식과 다르게 인공지능 기능을 초저전력으로 수행할 수 있어 많은 주목을 받고 있다.
공동연구팀은 단일 트랜지스터를 이용해 인간의 뇌를 모방한 뉴런과 시냅스로 구성된 뉴로모픽 반도체를 구현했다. 이 반도체는 상용화된 실리콘 표준 공정으로 제작되어, 뉴로모픽 하드웨어 시스템의 상용화 가능성을 획기적으로 높였다.
우리 대학 전기및전자공학부 한준규 박사과정이 제1 저자로, 같은 학부 오정엽 박사과정이 제2 저자로 참여한 이번 연구는 저명 국제 학술지 `사이언스 어드벤시스(Science Advances)' 8월 온라인판에 출판됐다. (논문명 : Co-integration of single transistor neurons and synapses by nanoscale CMOS fabrication for highly scalable neuromorphic hardware).
뉴로모픽 하드웨어를 구현하기 위해서는, 생물학적 뇌와 동일하게 일정 신호가 통합되었을 때 스파이크를 발생하는 뉴런과 두 뉴런 사이의 연결성을 기억하는 시냅스가 필요하다. 하지만, 디지털 또는 아날로그 회로를 기반으로 구성된 뉴런과 시냅스는 큰 면적을 차지하기 때문에 집적도 측면에서 한계가 있다. 인간의 뇌가 약 천억 개(1011)의 뉴런과 백조 개(1014)의 시냅스로 구성된다는 점에서, 실제 모바일 및 사물인터넷(IoT) 장치에 사용되기 위해서는 집적도를 개선할 필요가 있다.
이를 개선하기 위해 다양한 소재 및 구조 기반의 뉴런과 시냅스가 제안되었지만, 대부분 표준 실리콘 미세 공정 기술로 제작될 수 없어 상용화가 어렵고 양산 적용에 문제가 많았다.
연구팀은 문제 해결을 위해 이미 널리 쓰이고 있는 표준 실리콘 미세 공정 기술로 제작될 수 있는 단일 트랜지스터로 생물학적 뉴런과 시냅스의 동작을 모방했으며, 이를 동일 웨이퍼(8 인치) 상에 동시 집적해 뉴로모픽 반도체를 제작했다.
제작된 뉴로모픽 트랜지스터는 현재 양산되고 있는 메모리 및 시스템 반도체용 트랜지스터와 같은 구조로, 트랜지스터가 메모리 기능 및 논리 연산을 수행하는 것은 물론, 새로운 뉴로모픽 동작이 가능함을 실험적으로 보여 준 것에 가장 큰 의미가 있다. 기존 양산 트랜지스터에 새로운 동작원리를 적용해, 구조는 같으나 기능이 전혀 다른 뉴로모픽 트랜지스터를 제작했다. 뉴로모픽 트랜지스터는 마치 동전에 앞면과 뒷면이 동시에 있는 것처럼, 뉴런 기능도 하고 시냅스 기능도 수행하는 야누스(Janus) 구조로 구현 가능함을 세계 최초로 입증했다.
연구팀의 기술은 복잡한 디지털 및 아날로그 회로를 기반으로 구성되던 뉴런을 단일 트랜지스터로 대체 구현해 집적도를 획기적으로 높였고, 더 나아가 같은 구조의 시냅스와 함께 집적해 공정 단순화에 따른 비용 절감을 할 수 있는 신기술이다. 기존 뉴런 회로 구성에 필요한 평면적이 21,000 단위인 반면, 새로 개발된 뉴로모픽 트랜지스터는 6 단위 이하이므로 집적도가 약 3,500 배 이상 높다.
연구팀은 제작된 뉴로모픽 반도체를 바탕으로 증폭 이득 조절, 동시성 판단 등의 뇌의 기능을 일부 모방했고, 글자 이미지 및 얼굴 이미지 인식이 가능함을 보였다.
연구팀이 개발한 뉴로모픽 반도체는 집적도 개선과 비용 절감 등에 이바지하며, 뉴로모픽 하드웨어의 상용화를 앞당길 수 있을 것으로 기대된다.

< 그림 1. 상용화된 CMOS 공정으로 제작된 단일 트랜지스터 기반 뉴런과 시냅스 >

< 그림 2. 개발된 뉴로모픽 반도체를 기반으로 한 얼굴 이미지 인식 >
한준규 박사과정은 "상보성 금속 산화막 반도체(CMOS) 기반 단일 트랜지스터를 이용해 뉴런과 시냅스 동작이 가능함을 보였다ˮ 라며 "상용화된 CMOS 공정을 이용해 뉴런, 시냅스, 그리고 부가적인 신호 처리 회로를 동일 웨이퍼 상에 동시에 집적함으로써, 뉴로모픽 반도체의 집적도를 개선했고, 이는 뉴로모픽 하드웨어의 상용화를 한 단계 앞당길 수 있을 것이다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 차세대지능형반도체기술개발사업, 중견연구사업, 미래반도체사업 및 반도체설계교육센터의 지원을 받아 수행됐다.
요즘 수소 같은 청정에너지를 더 효율적이고 저렴하게 만들기 위해, 적은 전력으로 성능이 뛰어난 촉매 재료를 빠르게 합성하는 기술이 중요한 연구 주제로 떠오르고 있다. 우리 대학 연구진은 빛을 단 0.02초 비추어 3,000 ℃의 초고온을 구현하고 수소 생산 촉매를 효율적으로 제작할 수 있는 플랫폼 기술을 개발했다. 이 덕분에 에너지는 1/1,000만 쓰고도, 수소 생산 효율은 최대 6배 높아졌다. 이번 성과는 미래 청정에너지 기술의 상용화를 앞당길 핵심 돌파구로 평가된다. 우리 대학은 10월 20일, 신소재공학과 김일두 교수 연구팀과 전기및전자공학부 최성율 교수 연구팀이 강력한 빛을 짧게 쬐어주는 것만으로 고성능 나노 신소재를 합성하는 ‘직접접촉 광열처리(Direct-contact photothermal annealing)’ 합성 플랫폼을 개발했다고 밝혔다. 연구팀은 빛을 아주 짧게(0.02초) 비추는 것만으로 순간적으로 3,000 ℃의 초고온을 만들어내
2025-10-20사람의 뇌는 단순히 신호를 주고받는 연결(시냅스)만 조절하는 게 아니라, 개별 신경세포가 ‘상황에 맞게 스스로 예민해지거나 둔해지는’ 적응 능력인 ‘내재적 가소성’을 통해 정보를 처리한다. 하지만 기존 인공지능 반도체는 이런 뇌의 유연함을 흉내 내기 어려웠다. KAIST 연구진이 이번에 이 능력까지 구현한 차세대 초저전력 반도체 기술을 개발해 관심을 모으고 있다. KAIST(총장 이광형)는 신소재공학과 김경민 교수 연구팀이 뉴런이 과거 활동을 기억해 스스로 반응 특성을 조절하는 ‘내재적 가소성(intrinsic plasticity)’을 모방한 ‘주파수 스위칭(Frequency Switching) 뉴리스터(Neuristor)’를 개발했다고 28일 밝혔다. ‘내재적 가소성’은 같은 소리를 여러 번 들으면 점점 덜 놀라거나, 반복된 훈련을 통해 특정 자극에 더 빨리 반응하게
2025-09-29‘우리의 뇌는 어떻게 장내에서 흡수된 다양한 영양소 중 포도당을 구별해낼까?’ 우리 대학 연구진은 이 질문에서 출발해, 뇌가 단순히 총열량(칼로리)을 감지하는 수준을 넘어 특정 영양소, 특히 포도당을 선택적으로 인식할 수 있다는 사실을 입증했다. 이번 연구는 향후 식욕 조절 및 대사성 질환 치료 전략에 새로운 패러다임을 제시할 수 있을 것으로 기대된다. 우리 대학 생명과학과 서성배 교수 연구팀이 바이오및뇌공학과 박영균 교수팀, 생명과학과 이승희 교수팀, 뉴욕 알버트 아인슈타인 의과대학과의 협력을 통해, 배고픔 상태에서 포도당이 결핍된 동물이 장내의 포도당을 선택적으로 인식하고 선호하도록 유도하는 장-뇌 회로의 존재를 규명했다고 9일 밝혔다. 생물은 당, 단백질, 지방 등 다양한 영양소로부터 에너지를 얻는다. 기존 연구들은 장내 총열량 정보가 시상하부의 배고픔 뉴런(hunger neurons)을 억제함으로써 식욕을 조절한다는 사실을 밝혀왔으나, 특정 포도
2025-07-09뉴랜지스터(Neuransistor)는 ‘뉴런(Neuron) + 트랜지스터(Transistor)’의 합성어로 뇌의 뉴런 특성을 구현하는 트랜지스터라는 의미로 만들어진 새로운 용어이다. 이는 뇌 속 신경세포(뉴런)의 흥분과 억제 반응을 모방하여 시간에 따라 달라지는 정보를 스스로 처리하고 학습할 수 있는 차세대 인공지능 하드웨어의 핵심 반도체 소자다. KAIST 연구진이 뉴랜지스터의 개념을 제시하고 최초로 뉴랜지스터를 개발하는데 성공했다. 우리 대학 신소재공학과 김경민 교수 연구팀이 시간에 따라 변화하는 정보를 효과적으로 처리할 수 있는 액체 상태 기계(Liquid State Machine, 이하 LSM)*의 하드웨어 구현을 가능케 하는 뉴랜지스터 소자 개발에 성공했다. * 액체상태 기계(LSM): 생물학적 신경망의 동적 특성을 모사해, 시간에 따라 변화하는 입력 데이터를 처리하는 스파이킹 뉴럴 네트워크 모델 현재의 컴퓨터는 동영상과 같이 시간 흐름에 따
2025-04-16두뇌가 수행해야 하는 여러 가지 기능 중에는 감각 정보 처리와 같이 순간적인 것에서부터 기억과 같이 상대적으로 긴 시간 동안 그 내용이 보존되어야 하는 것도 있다. 한미 공동 연구진은 이런 뇌 신경 활동이 이루어지는 다양한 시간적 스케일에 대한 보편적 패턴을 파악하여 뇌의 다양한 기능을 가능하게 하는 신경망 회로 구조를 이해하는 길을 열었다. 우리 대학 뇌인지과학과 백세범 교수와 생명과학과 정민환 교수, 존스홉킨스대학교 이대열 교수 연구팀이 다양한 포유류 종의 뇌에서 공통적으로 나타나는 영역별 신경 활동의 시간적 스케일 패턴을 확인함으로써 뇌가 정보를 표상하는 원리를 이해하는 데에 한 걸음 더 나아갔다고 24일 밝혔다. 인간의 뇌에서 가장 두드러지는 영역인 대뇌피질은 시각피질과 같이 감각 정보를 담당하는 영역부터 전전두엽 피질과 같이 고등 인지를 담당하는 영역까지 순차적인 위계 구조로 되어있다. 연구팀은 신경 활동의 시간적 스케일이 위계가 낮은 영역에서부터 위계가 높은
2024-12-24