
< (왼쪽부터) 이건희 박사, 이도훈 박사과정, 전우진 박사과정, 스티브박 교수, 정재웅 교수, 박성준 교수 >
전자 섬유는 최근 각광받고 있는 사용자 친화 웨어러블 소자, 헬스케어 소자, 최소 침습형 임플란터블 전자소자에 핵심 요소로 여겨져 활발하게 연구가 진행되고 있다. 하지만 고체 금속 전도체 필러(Conductive filler)를 사용한 전자 섬유를 늘려서 사용하려 할 경우, 전기전도성이 급격하게 감소해 전기적 성질이 망가진다는 단점이 있다.
우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅, 바이오및뇌공학과 박성준 교수 공동 연구팀이 높은 전도도와 내구성을 가지는 액체금속 복합체를 이용해 신축성이 우수한 전자 섬유를 개발했다고 25일 밝혔다.
전자 섬유의 늘어나지 않는 단점을 해결하기 위해 연구팀은 고체처럼 형상이 고정된 것이 아닌 기계적 변형에 맞춰 형태가 변형될 수 있는 액체금속 입자 기반의 전도체 필러를 제시했다. 액체금속 마이크로 입자는 인장이 가해질 경우에 그 형태가 타원형으로 늘어나면서 전기 저항 변화를 최소화할 수 있다. 하지만 그 크기가 수 마이크로미터이기 때문에, 기존에 이용된 딥-코팅(dip-coating)과 같은 단순한 방법으로 실에 코팅하는 것이 불가능하다. 연구진은 액체금속 입자가 높은 밀도로 실 위에 전달될 수 있고, 블레이드와 기판 사이에서 현탁액의 조성을 실시간으로 바꾸면서 화학적 변성을 통해 액체금속 입자를 실과 접착시킬 수 있는 새로운 방법인 현탁액 전단(suspension shearing) 방법을 통해 이를 해결했다. 추가로 기계적 안정성이 우수한 탄소나노튜브(CNT)가 포함된 액체금속 입자를 한층 더 코팅하는 방식으로, 액체금속 복합체의 기계적 안정성도 확보할 수 있었다.

< 그림 1. 액체금속 복합체 기반 고신축성 전자섬유 구조와 사진 >
제작된 신축성 전자 섬유는 추가적인 공정이 필요 없이 우수한 초기전도성을 보였고(2.2x10^6 S/m), 기존의 고체 금속 전도체 기반 섬유들과는 다르게 150% 늘려도 전기저항 변화가 거의 없다. 기계적 안정성도 우수해 반복되는 변형 실험에도 전기적 성질을 유지할 수 있었고, 다양한 전자 부품들과 쉽게 통합될 수 있다. 연구팀은 이를 이용해 실제 상용화된 옷에 다양한 전자회로를 구현했다.
나아가서 연구팀은 액체금속 복합체를 코팅하는 방법이 다양한 실에 호환 가능하고, 재료의 생친화성이 우수하기 때문에, 이를 이용해 신경과학 연구에 사용할 수 있는 섬유형 바이오 전자 섬유를 구현했다. 연구팀은 제안된 코팅 방법을 이용해 기계적 변형에 영향을 받지 않는 뇌 활동 전극, 신경 자극 전극, 다기능성 옵토지네틱 프로브를 제작해 넓은 범용성과 높은 공정 신뢰성을 갖는다는 것을 보였다.

< 그림 2. 용액전단 방법을 이용한 섬유 위의 액체금속 복합체 입자조립과정과 코팅된 실의 사진 >
우리 대학 이건희 박사, 이도훈 박사과정, 전우진 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)' 온라인 판에 7월 13일자 출판됐다. (논문명: Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics)

< 그림 3. 액체금속 입자 기반의 전자 섬유를 이용한 옷감에 꿰매서 제작한 전자회로 및 신경과학용 다기능성 전자섬유 >
스티브박 교수는 "옷에 다양한 전자 공학적인 기능을 웨어러블 형태로 구현하는 가능성을 보여준 연구로 최근에 각광받고 있는 환자 편의성을 높인 웨어러블 헬스케어 소자나 최소침습형 임플란터블 전자소자 개발의 새로운 방향성을 제시한 의미있는 결과ˮ 라고 말했다.
한편 이번 연구는 한국연구재단, KAIST의 지원을 받아 수행됐다. 이건희 박사는 포스코청압재단의 지원을 받고 있다.
우리 몸에 생긴 암세포가 다른 부위로 퍼지는 암 전이나, 상처를 치유하기 위해 면역세포가 이동하는 과정 등 세포의 이동은 생명현상에 꼭 필요한 과정이다. 그러나 그동안 세포가 외부 자극 없이 스스로 이동 방향을 결정하는 원리는 밝혀지지 않았다. 우리 대학과 국제 공동 연구진은 이번 연구를 통해 세포가 스스로 방향을 정해 움직이는 원리를 규명, 향후 암 전이와 면역 질환의 원인을 밝히고 새로운 치료 전략을 세우는 데 중요한 단서를 제시했다. 우리 대학은 생명과학과 허원도 석좌교수 연구팀이 바이오및뇌공학과 조광현 석좌교수 연구팀, 미국 존스홉킨스대 이갑상 교수 연구팀과 공동으로 세포가 외부의 신호 없이도 스스로 이동 방향을 결정하는 ‘자율주행 메커니즘’을 세계 최초로 규명했다고 10일 밝혔다. 연구팀은 살아있는 세포 안에서 단백질들이 서로 어떻게 상호작용하는지를 눈으로 직접 볼 수 있는 새로운 이미징 기술 ‘INSPECT(INtracellular
2025-11-10요즘 수소 같은 청정에너지를 더 효율적이고 저렴하게 만들기 위해, 적은 전력으로 성능이 뛰어난 촉매 재료를 빠르게 합성하는 기술이 중요한 연구 주제로 떠오르고 있다. 우리 대학 연구진은 빛을 단 0.02초 비추어 3,000 ℃의 초고온을 구현하고 수소 생산 촉매를 효율적으로 제작할 수 있는 플랫폼 기술을 개발했다. 이 덕분에 에너지는 1/1,000만 쓰고도, 수소 생산 효율은 최대 6배 높아졌다. 이번 성과는 미래 청정에너지 기술의 상용화를 앞당길 핵심 돌파구로 평가된다. 우리 대학은 10월 20일, 신소재공학과 김일두 교수 연구팀과 전기및전자공학부 최성율 교수 연구팀이 강력한 빛을 짧게 쬐어주는 것만으로 고성능 나노 신소재를 합성하는 ‘직접접촉 광열처리(Direct-contact photothermal annealing)’ 합성 플랫폼을 개발했다고 밝혔다. 연구팀은 빛을 아주 짧게(0.02초) 비추는 것만으로 순간적으로 3,000 ℃의 초고온을 만들어내
2025-10-20우리 대학은 최근 캠퍼스를 중심으로 다양한 로봇 창업 기업들이 투자 유치를 성공하며 ‘한국형 로봇의 산실’로 주목받고 있다고 16일 밝혔다. 기계공학과 오준호 교수가 창업한 레인보우로보틱스는 세계적 휴머노이드 기술력을 앞세워 상장에 성공하며 로봇 산업의 새로운 이정표를 세웠다. 이어서 기계공학과 공경철 교수가 창업한 재활·의료 로봇 전문기업 엔젤로보틱스도 상장에 성공, KAIST 출신 로봇 창업 기업의 성과가 가시화되고 있다. 뒤를 이어 푸른로보틱스(2021, 함현철, 기계공학과 석사 졸업), 위로보틱스(2021, 이연백, 기계공학과 석사 졸업), 라이온로보틱스(2023 기계공학과 황보제민 교수), 트라이앵글로보틱스(2023, 최진혁, 전산학부 박사과정), 유로보틱스(2024. 유병호, 전기및전자공학부 박사 졸업), 디든로보틱스(2024, 김준하, 기계공학과 박사 졸업) 등은 사족보행, 협동로봇, 웨어러블, 자율보행 등 다양한 기술 분야에서
2025-09-16우리 대학이 세계적인 석학인 미국 노스웨스턴대 존 로저스(John A. Rogers) 교수를 비롯해 3명의 석학을 신소재공학과 등 주요 학과의 초빙석학교수(Invited Distinguished Professor)로 임용했다고 27일 밝혔다. 존 로저스 교수(미국 노스웨스턴대)는 신소재공학과에서 2025년 7월부터 2028년 6월까지 재직할 예정이며, 그레그 로서멜 교수(Gregg Rothermel, 미국 노스캐롤라이나 주립대)는 전산학부에서 2025년 8월부터 2026년 7월까지, 최상혁 박사(Sang H. Choi, 미국 NASA 랭글리 리서치센터)는 항공우주공학과에서 2025년 5월부터 2028년 4월까지 근무하게 된다. 생체 통합 전자소자(bio-integrated electronics) 분야 세계적 권위자인 존 로저스 교수는 유연 전자소자, 스마트 피부, 이식형 센서 등 첨단 융합기술을 선도해 왔으며, Science, Nature, Cell 등 세계 최고 학술지에
2025-06-27우리 대학은 30일 대전 본원 학술문화관(E9) 정근모 콘퍼런스홀에서 ‘2025년 KAIST 리서치데이(Research Day)’를 개최한다. 리서치데이는 지난 2016년부터 매년 이어져 온 KAIST의 대표적인 연구 축제로, 연구개발(R&D) 성과를 공유하고 융합연구를 위한 연구자들의 교류를 활성화를 위해 마련되었다. 올해 리서치데이에서는 ▲연구 부문 우수교원 ▲2024년 KAIST 대표연구성과 10선 ▲14대 미래선도기술 대표연구성과 ▲2024년 URP 프로그램 우수과제 포상 등 네 가지 부문에서 시상이 이루어진다. 이날 최고의 영예인 ‘연구대상’은 배현민 교수(전기및전자공학부)가 수상한다. 배 교수는 ‘AI를 통한 정량적 의료 영상 초음파 장비 연구개발 연구’를 주제로 기념 강연을 진행하며, 10여 년간의 연구 여정을 공유할 예정이다. 배 교수는 초음파 장비에 인공지능을 접목해 상업화에 성공하
2025-04-30