
< 김재철AI대학원 정송 원장이 개회사를 실시하고 있다. >
우리 대학 김재철AI대학원(원장 정송)은 지난 5월 2일(목) 서울 COEX에서 ‘KAIST 김재철AI대학원 AI기술설명회 2024’(공동주최: 성남산업진흥원, 서울특별시)를 열었다. 본 행사는 KAIST 김재철AI대학원에서 연구개발 중인 최신 AI기술을 일반 참관객 및 산업계 종사자에게 홍보하여 AI기술 확산에 기여하기 위해 마련됐다. 이번 설명회에는 약 650여명이 참석하여 KAIST에서 연구 중인 AI기술에 대한 큰 관심을 확인할 수 있었다.
오전 프로그램으로는 최근 관심이 높은 AI기술 분야에 대한 초청 강연을 진행했다. 최근 산업계의 주요 관심사인 ‘기업용 대형언어모델(LLM) 도입과 활용 전략’을 주제로 장동인 교수(KAIST 김재철AI대학원)가 강연했고, ‘AI와 로봇의 만남: 로봇러닝의 현재와 미래’라는 제목으로 임재환 교수(KAIST 김재철AI대학원)가 로봇러닝 분야의 연구동향과 성과를 설명했다. 이어서 문성은 리더(네이버 클라우드)가 헬스케어AI 기술동향에 대해 발표했으며, 해당 강연에는 카이스트-네이버 초창의 AI 연구센터(Hyper-Creative AI Research Center)에서 수행한 헬스케어AI 관련 공동연구 내용도 소개됐다.

< 김재철AI대학원 임재환 교수가 강연하고 있다. >
오후 세션에서는 김재철AI대학원의 각 연구실이 보유한 다양한 AI 분야 기술과 최신 연구성과 발표가 이어졌다. 보유기술 소개 1부에서는 LLM, 딥러닝 알고리즘, 로봇 분야에 대한 기술발표가 있었다. ▲생성형 AI 평가 기술(서민준 교수, KAIST 김재철AI대학원, 이하 발표자 소속 동일) ▲데이터/자원 효율적 언어모델 선호 최적화 알고리즘(홍지우 연구원, James Thorne 교수) ▲생성형 언어모델을 사용한 정형 데이터 오버샘플링 기법(양준용 연구원, 양은호 교수) ▲대규모 딥러닝 모델을 위한 베이지안 딥러닝 기법(김현수 연구원, 이주호 교수) ▲로봇에게 물체 조작과 인지 능력 부여하기(김범준 교수) ▲병렬 디코딩을 활용한 자기회귀 언어모델의 빠르고 강건한 조기 추론 프레임워크(배상민 연구원, 윤세영 교수) 등이 소개되었다.
보유기술 소개 2부에서는 ▲실제 환경에서 사실적인 가상 착용을 위한 디퓨전 모델 개선(최이솔 연구원, 신진우 교수) ▲컴퓨터 비전 분야 영상 합성 및 변환 기술(황성원 연구원, 주재걸 교수) ▲전자건강기록 및 흉부 엑스레이 데이터베이스에 대한 멀티모달 질의응답 기술(배성수 연구원, 최윤재 교수) ▲딥러닝 모델이 학습한 특징 이해를 통한 AI 의사결정 설명기술(권다희 연구원, 최재식 교수) ▲안드로이드 모바일 기기 제어 에이전트의 다양한 기기 환경에서의 벤치마킹 연구(이주용 연구원, 이기민 교수) 등 컴퓨터 비전, 헬스케어 AI, 설명가능 인공지능(XAI) 및 에이전트 분야에 대한 최신 기술 소개 및 시연이 있었다.
본 기술설명회를 주관한 김재철AI대학원 정송 원장은 “AI엑스포에 참가한 일반대중과 산업계 종사자들에게 우리 대학원이 보유한 글로벌 수준의 최신 AI기술을 널리 알려 국내 기업들이 AI 기반 혁신을 추진하는 데에 앞장서겠다.”고 밝혔다.
행사 종료 후 김재철AI대학원이 보유한 기술에 대한 기술이전이나 공동연구에 관심이 있는 기업들은 KAIST 성남연구센터를 통해 기술상담 신청을 할 수 있다.
우리 대학은 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 ‘루닛 컨소시움’ 주요 참여기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 14일 밝혔다. 이번 사업을 통해 KAIST는 바이오·의료 데이터 전주기를 아우르는‘의과학 특화 AI 파운데이션 모델’을 개발하며, AI 기반 생명과학 혁신 생태계 조성을 주도할 계획이다. ‘루닛 컨소시움’에는 루닛을 중심으로 트릴리온랩스, 카카오헬스케어, 아이젠사이언스, SK바이오팜, 리벨리온 등 7개 기업과, KAIST, 서울대, NYU, 국민건강보험공단 일산병원, 용인세브란스병원 등 9개 의료기관 및 연구기관이 함께 참여한다. 본 컨소시엄은 최신 B200 GPU 256장을 지원받아, 의료 데이터를 처음부터 끝까지 연결해 분석하는 AI 시스템인‘증거사슬(Chai
2025-11-14우리 대학이 추진 중인 ‘K-글로벌 딥테크 창업 전략’이 구체적인 성과로 이어지고 있다. 우리 대학은 창업원이 육성한 의료 AI 솔루션 기업 ㈜배럴아이(대표 배현민)가 글로벌 헬스케어 선도기업으로부터 약 140억 원(미화 1,000만 달러) 규모의 전략적 시리즈 A 투자를 유치하며, KAIST 딥테크 창업 생태계의 대표 성공 사례로 자리매김했다고 14일 밝혔다. ■ KAIST, 연구기반 딥테크 창업 전주기 지원체계 강화 KAIST 창업원은 과학기술 기반 창업을 통한 혁신 생태계 조성을 목표로 기술사업화·창업보육·투자연계·글로벌 진출 등 전주기 지원체계를 운영하고 있다. ‘K-글로벌 딥테크 창업 전략’을 중심으로 연구성과의 시장 진입과 글로벌 투자 유치를 촉진하며, 대한민국을 대표하는 딥테크 창업 허브로 성장하고 있다. KAIST는 특히 AI, 바이오헬스, 반도체, 미래모빌리티 등 첨단 산업 분
2025-11-13목표 과업에 좋은 성능을 보이는 신경망 구조를 찾는 것은 큰 비용이 소요되어, 신경망의 성능을 효율적으로 예측하는 방법론이 활발히 연구되었다. 우리 대학 김재철AI대학원 소속 김선우 박사과정, 황현진 석박통합과정(지도교수 신기정)은 그래프 기반 사전학습을 이용하여, 기존의 효과적인 방법론의 성능을 개선하면서, 약 43배 빠른 예측 속도를 보이는 예측 기법을 개발하였다. 인공지능 모델은 최근 다양한 분야에서 괄목할 성과를 거두었지만, 모델의 신경망 구조가 해당 모델의 성능에 영향을 크게 미치는 특징이 있다. 그러나 목표 과업에 적합한 신경망 구조를 알고자 직접적으로 해당 신경망 구조를 학습 및 평가하는 방식은 큰 비용이 소요된다. 이를 해결하기 위해, 다른 인공지능 모델을 사용하여 특정 신경망 구조의 성능을 예측하는 방식이 사용되었다. 경량화된 예측 모델은 예측 속도는 빠르나 예측 성능이 낮다는 한계가 있었고, 최근 개발된 방법론은 예측 정확도는 높으나 예측 속도가 매우 느린 문
2025-11-11우리 대학은 11월 14일, 컴퓨터 과학 분야 세계적 권위의 학술대회인 ‘정보 및 지식관리 학회(The 34th International Conference on Information and Knowledge Management, CIKM 2025)’에서‘인간 중심 AI: 설명가능성과 신뢰성에서 실행 가능한 윤리까지(Human-Centric AI: From Explainability and Trustworthiness to Actionable Ethics)’를 주제로 국제 워크숍(워크샵 조직위원장: KAIST 김재철AI대학원 최재식 교수)을 개최할 예정이다. 이번 행사는 KAIST 김재철AI대학원이 주도하고 서울대, 서강대, 성균관대, 한국전자통신연구원(ETRI), 독일 TU Berlin 등 국내외 유수 기관이 공동으로 참여하는 자리다. AI 기술의 잠재적 위험을 줄이고 책임 있는 활용을 위한 ‘인간 중심 AI&rsquo
2025-11-07KAIST 연구진이 구글 딥마인드의 ‘알파폴드3(AlphaFold3)’를 뛰어넘는 차세대 바이오 AI 모델 ‘K-Fold’ 개발에 나섰다. 이번 연구를 통해 KAIST는 빠르고 정확한 신약 개발, 낮은 실패율, 그리고 AI 기반 과학 혁신을 실현하며, ‘AI가 과학을 돕는 시대’를 넘어 ‘AI가 과학을 이끄는 시대’를 여는 주역으로 떠오를 전망이다. KAIST(총장 이광형)는 과학기술정보통신부가 주관하는‘AI 특화 파운데이션 모델 개발 사업’의 주관기관으로 선정되어, 의과학·바이오 분야 AI 파운데이션 모델 개발에 본격 착수했다고 7일 밝혔다. KAIST는 이번 사업을 통해 국내 최고 수준의 인공지능(AI) 연구 역량을 바이오 분야에서도 입증하고, 신약 개발 등 첨단 바이오 AI 연구에 활용할 수 있는 차세대 파운데이션 모델 ‘K-Fold&rs
2025-11-07