암 전이‘세포 이동의 비밀’풀었다
우리 몸에 생긴 암세포가 다른 부위로 퍼지는 암 전이나, 상처를 치유하기 위해 면역세포가 이동하는 과정 등 세포의 이동은 생명현상에 꼭 필요한 과정이다. 그러나 그동안 세포가 외부 자극 없이 스스로 이동 방향을 결정하는 원리는 밝혀지지 않았다. 우리 대학과 국제 공동 연구진은 이번 연구를 통해 세포가 스스로 방향을 정해 움직이는 원리를 규명, 향후 암 전이와 면역 질환의 원인을 밝히고 새로운 치료 전략을 세우는 데 중요한 단서를 제시했다.
우리 대학은 생명과학과 허원도 석좌교수 연구팀이 바이오및뇌공학과 조광현 석좌교수 연구팀, 미국 존스홉킨스대 이갑상 교수 연구팀과 공동으로 세포가 외부의 신호 없이도 스스로 이동 방향을 결정하는 ‘자율주행 메커니즘’을 세계 최초로 규명했다고 10일 밝혔다.
연구팀은 살아있는 세포 안에서 단백질들이 서로 어떻게 상호작용하는지를 눈으로 직접 볼 수 있는 새로운 이미징 기술 ‘INSPECT(INtracellular Separation of Protein Engineered Condensation Technique)’를 개발했다. 이 기술을 이용해 세포가 스스로 어느 방향으로 움직일지를 정하는 내부 프로그램의 원리를 밝혀냈다.
연구팀은 세포 이동을 조절하는 핵심 단백질인 Rho 계열 단백질(Rac1, Cdc42, RhoA)의 작동 방식을 새롭게 분석했다. 그 결과, 이 단백질들이 기존에 알려진 이론인 단순히 세포의 앞뒤를 나누는 역할만 하는 것이 아니라, 어떤 단백질과 결합하느냐에 따라 세포가 직진할지, 방향을 바꿀지가 달라진다는 사실을 밝혀냈다.
INSPECT 기술은 단백질이 서로 붙을 때 서로 잘 섞이지 않고 구분된 영역이 자연스럽게 생기는 ‘상분리(phase separation)’현상을 인공적으로 구현하는 기술로, 세포 속에서 단백질들이 실제로 어떻게 결합하는지를 형광 신호로 직접 볼 수 있는 기술이다.
연구팀은 단백질 페리틴(ferritin)과 형광단백질 DsRed를 활용해, 단백질들이 서로 결합할 때 작은 방울처럼 뭉친 덩어리인 ‘응집체(condensate)’를 눈으로 확인할 수 있게 했다.
이 기술로 연구팀은 15종의 Rho 단백질과 19종의 결합 단백질을 조합해 총 285쌍의 상호작용을 분석했고, 그중 139쌍에서 실제 결합이 일어남을 확인했다. 특히, Cdc42–FMNL 단백질 조합은 세포의 ‘직진’을, Rac1–ROCK 단백질 조합은 세포의 ‘방향 전환’을 담당하는 핵심 회로라는 사실을 밝혀냈다.
연구팀은 세포의 방향 조절에 중요한 단백질 Rac1의 일부(37번째 아미노산)를 살짝 바꿔서, 그 단백질이 ‘핸들 역할’을 하는 ROCK 단백질과 잘 붙지 못하게 만들었다. 그러자 세포는 방향을 바꾸지 못하고 계속 직선으로만 이동했다.
반면 정상 세포에서는 Rac1과 ROCK이 잘 결합해서 세포 앞부분에 ‘아크 스트레스 섬유(arc stress fiber)’라는 구조가 생기고, 이 섬유는 세포가 방향을 바꿀 때 직각에 가까운 방향 전환이 되도록 했다.
또한 세포가 붙어 있는 환경을 변화시킨 실험에서, 정상 세포는 주변 환경에 따라 이동 속도가 달라졌지만, Rac1F37W 세포(핸들이 고장난 세포)는 환경 변화와 관계없이 속도는 항상 똑같았다. 이는 Rac–ROCK 단백질 축이 세포가 주변 환경을 인식하고 적응하는 능력을 세밀하게 조절한다는 것을 보여준다.
허원도 교수는 “이번 연구는 세포 이동이 무작위적인 운동이 아니라, Rho 신호전달 단백질과 세포 이동 관련 단백질의 앙상블이 만들어내는 내재적 프로그램에 의해 정밀하게 제어된다는 사실을 규명한 것”이라며, “새롭게 개발한 INSPECT 기술은 세포 내 단백질 상호작용을 시각화할 수 있는 강력한 도구로, 암 전이와 신경세포 이동 등 다양한 생명현상과 질병의 분자 메커니즘을 밝히는 데 폭넓게 활용될 것”이라고 말했다.
KAIST 이희영 박사, 이상규 박사(현재 기초과학연구원(IBS) 소속), 서예지 박사(현재 (주)휴룩스 소속), 김동산 박사(현재 LIBD 소속)가 공동 제1저자로 참여한 이번 연구는 네이처 커뮤니케이션즈(Nature Communications)에 10월 31일 게재되었다.
※논문명: A Rho GTPase-effector ensemble governs cell migration behavior
※DOI: https://doi.org/10.1038/s41467-025-64635-0
이 연구는 삼성미래기술육성재단과 한국연구재단의 지원을 받아 수행되었다.
면역세포가 폭주하는 비밀을 밝히다
“바이러스를 없애야 할 면역세포가, 왜 갑자기 우리 몸을 공격할까?”
바이러스에 감염된 세포만 정밀하게 제거해야 하는 ‘킬러 T세포’가 때로는 과열된 엔진처럼 정상 세포까지 파괴해 오히려 우리 몸에 손상을 입히는 현상이 있다. 우리 대학 연구진이 이처럼 폭주하는 킬러 T세포의 활성화 과정을 제어할 수 있는 핵심 원리를 규명하며, 향후 면역 과잉 반응을 조절하고 면역질환 치료제 개발의 실마리를 제시했다.
우리 대학은 의과학대학원 신의철·박수형 교수 연구팀이 충남대 의대 은혁수 교수와 공동연구를 통해, 킬러 T세포의 ‘비특이적 활성화’가 일어나는 분자적 원인을 규명하고, 이를 조절할 수 있는 새로운 치료 전략을 제시했다고 5일 밝혔다.
킬러 T세포(CD8+ T세포)는 감염된 세포만 선별적으로 제거해 바이러스 확산을 억제하지만, 반응이 과도해지면 감염되지 않은 정상 세포까지 공격하여 염증과 조직 손상을 유발할 수 있다. 이러한 ‘과잉 면역 반응’은 중증 바이러스 질환이나 자가면역질환으로 이어질 수 있다.
연구팀은 2018년, 세계 최초로 사이토카인(cytokine)에 의해 비특이적으로 활성화된 킬러 T세포가 아무 세포나 무작위로 공격한다는 사실을 규명하고, 이를 ‘비특이적 T세포 활성화’로 명명한 바 있다. 이번 연구는 그 후속 연구로, 이러한 비특이적 활성화의 분자적 기전을 규명했다.
특히 연구팀은 여러 사이토카인 중 ‘인터류킨-15(IL-15)’라는 물질에 주목했다. 실험 결과, IL-15는 킬러 T세포를 비정상적으로 흥분시켜 감염되지 않은 세포까지 공격하게 만들지만, 반대로 바이러스 감염 등 항원 자극이 있을 때는 이러한 과잉 반응을 억제함을 밝혀냈다.
이러한 억제 작용은 세포 안의 칼슘(Ca²⁺) 농도가 변하면 칼시뉴린(calcineurin)이란 단백질이 작동하고 이 신호가 NFAT라는 조절 단백질을 움직여 킬러 T세포의 행동을 제어한다는 사실도 새롭게 규명됐다. 즉 IL-15 신호에 의해 활성화되는 세포 내부의 칼시뉴린–NFAT 경로가 브레이크 역할을 하는 것이다.
또한 연구팀은 일부 면역억제제가 이 칼시뉴린 경로를 차단해 면역을 억제하기는 커녕 오히려 특정 상황에서는 IL-15에 의한 킬러 T세포의 과도한 활성화를 촉진할 수 있음을 확인했다. 이는 면역억제제의 작용이 모두 동일하지 않으며, 환자의 면역 반응 양상에 따라 약제를 신중히 선택해야 함을 의미한다.
연구팀은 유전자 발현 분석을 통해 IL-15에 의해 비정상적으로 활성화된 킬러 T세포에서만 증가하는 유전자 세트(마커)를 찾아냈으며, 이 마커가 급성 A형 간염 환자의 킬러 T세포에서도 뚜렷하게 증가함을 확인했다. 이를 통해 해당 마커가 질병 진단에 활용될 수 있는 가능성을 제시했다.
이번 연구는 중증 바이러스 감염, 만성 염증성 질환, 자가면역질환, 장기이식 거부반응 등 다양한 면역 질환의 발병 원인 이해에 중요한 단서를 제공한다. 또한 IL-15 신호를 표적으로 하는 새로운 면역조절 치료제 개발에도 기여할 것으로 기대된다.
신의철 교수는 “우리 몸의 킬러 T세포는 단순한 방어자가 아니라, 염증 환경에 따라 ‘비특이적 공격자’로 변할 수 있음을 보여준 연구”라며 “이러한 비정상적인 활성화를 정밀하게 조절하면, 난치성 면역질환에 대한 새로운 치료법을 개발할 수 있을 것”이라고 말했다.
이번 연구 결과는 의과학대학원 이호영 박사와 박사과정 김소영 학생이 공동 제 1저자로 참여한 논문으로, 국제학술지 면역학(Immunity)에 10월 31일 자 게재되었다.
※논문명: TCR signaling via NFATc1 constrains IL-15-induced bystander activation of human memory CD8+ T cells, DOI: doi.org/10.1016/j.immuni.2025.10.002
이 연구는 한국연구재단, 한국보건산업진흥원, 기초과학연구원(IBS)의 지원으로 수행되었다.
생명과학과 이흥규 교수, 대한면역학회 학술대상 수상
우리 대학 생명과학과 이흥규 교수가 대한면역학회 주최 KAI2025 국제학술대회에서 학술대상(Grand Achievement Award)을 수상했다.
이흥규 교수는 치료가 어려운 뇌종양의 면역세포 작용 기전을 규명하고, 면역관문억제제의 치료 효능을 향상시킬 수 있는 새로운 면역 타깃 전략을 제시해 왔다. 특히, 식이 변화에 따른 장내 미생물 구성의 변화가 뇌종양의 면역 조절에 미치는 영향을 규명하여, 장–면역–뇌(Gut–Immune–Brain) 축(axis)이라는 새로운 개념적 기전을 제시함으로써 국내외 학계의 주목을 받았다.
또한 이 교수는 면역관문치료제의 효과를 극대화할 수 있는 면역세포 조절 메커니즘을 밝혀냄으로써, 차세대 뇌종양 면역치료제 개발의 새로운 방향을 제시했다는 평가를 받았다.
이 교수는 이번 학술대상 상금 3천만 원 전액을 대한면역학회에 기부하며, 이를 면역학 분야 우수 박사학위논문상 신설에 사용해 학문 후속세대 양성에 기여할 뜻을 밝혔다.
이흥규 교수는 수상 소감에서 “이번 수상은 저 개인의 성취라기보다 함께 연구해 온 학생들과 동료 연구자들이 만들어낸 결실”이라며 “기초면역학의 발견이 환자 치료로 이어질 수 있도록 앞으로도 변함없이 도전하겠다”고 전했다. 이어 “상금은 미래 면역학을 이끌 젊은 연구자들의 성장을 위해 쓰이길 바란다”고 덧붙였다.
대한면역학회 학술대상은 면역학 분야에서 국제적으로 탁월한 연구 성과를 거둔 연구자에게 수여되는 상으로, 기조강연 및 시상식은 11월 1일 인천 송도 컨벤시아에서 열린 KAI2025 국제학술대회에서 진행될 예정이다.
난치성 뇌전증 신약 후보신약 7,500억원 글로벌 기술 수출
우리 대학은 의과학대학원 이정호 교수의 교원 창업기업인 소바젠(각자대표 박철원·이정호)이 난치성 뇌전증을 치료하기 위한 혁신적인 RNA 신약 후보를 개발해, 총 7,500억 원 규모의 글로벌 기술 수출에 성공했다고 9일 밝혔다.
이번 성과는 KAIST의 기초 의과학 연구에서 출발한 혁신적 발견이 실제 신약 개발과 세계 시장 진출로 이어진 대표적 사례로 주목받고 있다.
이정호 교수 연구팀은 난치성 뇌전증과 악성 뇌종양 같은 치명적 뇌 질환의 원인이‘뇌 줄기세포에서 생긴 후천적 돌연변이(뇌 체성 돌연변이, Brain Somatic Mutation)’인 사실을 세계 최초로 규명해 네이처(Nature)와 네이처 메디슨(Nature Medicine) 등에 2015년, 2018년에 발표한 바 있다.
이후 신약 개발 전문가인 소바젠의 박철원 대표와 함께, 뇌전증의 원인 돌연변이 유전자인 MTOR를 직접 겨냥할 수 있는 RNA 신약(ASO, Antisense Oligonucleotide)을 발굴했고 글로벌 제약사와의 대규모 기술이전 계약을 통해 상업화 가능성까지 입증했다.
특히 이번 성과는 의사이면서 기초 연구를 집중 수행하는 ‘의사과학자(M.D.-Ph.D. Physician Scientist)’인 이정호 교수가 중개 연구와 벤처 창업을 결합해 이룬 성과라는 점에서 큰 의미가 있다.
기초 연구실에서 출발한 아이디어가 창업 기업을 통해 세계 최초 신약(혁신 신약, First-In-Class) 후보로 발전하고, 다시 글로벌 시장으로 연결되는 선순환 구조를 만든 것이다.
소바젠의 박상민 수석연구원(KAIST 의과학대학원 졸업생)은 “질병 원인 규명부터 신약 개발, 그리고 글로벌 기술 수출까지 모두 대한민국 과학의 힘으로 가능했다”고 밝혔다. 또한 소바젠 박철원 대표는 “이광형 총장님을 비롯해 학교 주요 관계자들이 의과학대학원과 교원 창업 기업들을 적극 지원해 주신 덕분에 이번 성과가 가능했다”고 강조했다.
이정호 교수는 “국내 의과대학은 환자 진료 중심 문화인 반면, KAIST는 혁신과 산업화를 중시하는 연구 문화를 갖추고 혁신적 기초 연구와 신약 기술 수출이라는 두 가지 성과를 동시에 달성할 수 있었다”며, “이번 성과가 앞으로 KAIST 의과학 연구가 나아갈 방향을 보여주는 좋은 사례가 될 것”이라고 말했다.
전문가들은 이번 성과가 기존에 치료제가 전혀 없던 난치성 뇌전증 환자들에게 새로운 치료 가능성을 열어주었으며, 동시에 한국 의과학과 바이오벤처가 ‘혁신 신약 개발’이라는 글로벌 무대에서 경쟁력을 가질 수 있음을 보여준 좋은 사례라고 평가했다.
이광형 KAIST 총장은 “이번 성과는 KAIST가 추구해 온 ‘기초에서 산업으로’라는 연구 철학이 의과학 분야에서도 현실로 구현된 대표적 사례”라며, “KAIST는 앞으로도 도전적 기초 연구를 통해 인류 건강과 미래 바이오산업을 선도하는 혁신을 이어가겠다”고 밝혔다.
‘희귀병과 치매가 닯았다’KAIST, 헌팅턴병 원인 단백질 새 기능 규명
전 NBC 뉴스 기자 찰스 서빈(Charles Sabine)과 미국의 전설적 포크 가수 우디 거스리(Woody Guthrie)의 공통점은 희귀 유전성 질환인 헌팅턴병을 앓았다는 점이다. 헌팅턴병은 근육 조정 능력 상실, 인지 기능 저하, 정신적 문제를 동반하는 대표적인 신경계 퇴행성 질환이다. 국내외 연구진은 이 병의 원인 단백질인 헌팅틴 단백질이 변형될 뿐 아니라, 세포 골격을 유지하는 중요한 기능을 수행한다는 사실을 새롭게 규명했다. 이번 발견은 헌팅턴병의 발병 원인 이해를 넓히고, 세포 골격 이상이 관여하는 알츠하이머병, 파킨슨병, 근위축증 등 다른 퇴행성 질환 연구에도 기여할 것으로 기대된다.
우리 대학은 생명과학과 송지준 교수 연구팀이 오스트리아 과학기술원(ISTA), 프랑스 소르본느대/파리 뇌연구원(Paris Brain Institute), 스위스 연방공대(EPFL) 등과 국제 공동연구를 통해, 초저온 전자현미경(cryo-EM)과 세포생물학적 기법을 통해 헌팅틴 단백질이 세포골격 미세섬유(F-actin)를 다발 형태로 배열하는 구조적 원리를 규명했다고 16일 밝혔다.
그동안 헌팅틴 단백질은 소포 운반이나 미세소관 기반 수송에 관여하는 등 세포골격을 ‘쓰는’ 역할만 한다고 알려져 있었으나, 연구팀이 헌팅틴 단백질이 세포골격 자체를 물리적으로 조직한다는 사실을 밝혀냈다. 이번 연구는 헌팅틴 단백질의 새로운 역할을 분자 수준에서 세계 최초로 증명한 것으로 평가된다.
연구팀은 헌팅틴 단백질이 세포골격 미세섬유(F-actin)에 직접 결합하고, 두 개의 헌팅틴 단백질이 짝을 이루면서 약 20나노미터 간격으로 세포골격을 다발 형태로 가지런히 묶어준다는 것을 확인했다.
이렇게 형성된 세포골격 다발은 신경세포 간 연결망 발달에 핵심적 역할을 한다. 실제로 헌팅틴 단백질이 결핍된 신경세포에서는 신경세포의 구조적 발달이 저해되는 현상이 관찰됐다.
제1 저자인 KAIST 김재성 박사과정생은 “이번 연구를 통해, 그동안 베일에 싸여 있던 불치병인 헌팅턴병 원인 단백질의 작용 기전을 이해하는 새로운 관점을 제시했다”라고 말했다.
KAIST 생명과학과 송지준 교수는 “이번 성과는 헌팅턴병 발병 메커니즘을 이해하는 데 중요한 단서를 제공할 뿐 아니라, 세포골격 관련 질환 연구에도 파급 효과가 클 것으로 기대한다”며, “세포 분열, 이동, 기계적 신호 전달 등 다양한 생명 현상에서 헌팅틴 단백질의 역할을 새롭게 조명할 수 있는 길을 열었다”고 말했다.
이번 연구는 KAIST 김재성 박사과정생·김형주 박사(현 하버드대), 파리 뇌연구원 헤미 카펜티어(Remi Carpentier) 연구원, 마리아 크리스티나 가피치(Mariacristina Capizzi) 연구원 등이 제1 저자로 참여하여 국제 학술지 ‘사이언스(Science)’ 자매지인 ‘사이언스 어드밴시스(Science Advances)’ 9월 19일 자에 출판됐다.
※논문명: Structure of the Huntingtin F-actin complex reveals its role in cytoskeleton organization,
DOI: https://doi.org/10.1126/sciadv.adw4124
※공동 교신저자: KAIST 송지준 교수를 비롯해 오스트리아 ISTA 플로리안 슈어(Florian Schur) 교수, 프랑스 소르본대/파리 뇌연구원 산드린 훔베르(Sandrine Humbert) 교수
한편 이번 연구는 보건복지부 글로벌연구협력지원사업(한-스위스 바이오헬스 국제공동연구) 및 한-오스트리아 협력기반조성사업의 지원을 받아 수행됐다.
암세포 핵 비대가 전이를 억제할 수 있다
조직 검사에서 암세포는 정상보다 큰 핵(세포의 유전정보 저장고)을 지닌 경우가 흔히 관찰된다. 그동안 이는 암이 악화된다는 신호로 여겨졌지만, 정확한 원인과 영향은 밝혀지지 않았다. KAIST 연구진은 이번 연구에서 암세포 핵 비대가 악성화의 원인이 아니라 복제 스트레스에 따른 일시적 반응이며, 오히려 전이를 억제할 수 있음을 규명했다. 이번 발견은 암 진단과 전이 억제를 위한 새로운 치료 전략 개발로 이어질 것으로 기대된다.
KAIST(총장 이광형)는 의과학대학원 김준 교수 연구팀이 김지훈 교수·김유미 교수 연구팀과 함께, 암세포에서 핵이 커지는 분자적 이유를 알아냈다고 26일 밝혔다. 이번 성과는 병리 검사에서 자주 관찰되지만 직접적 원인과 암 발달과의 관계가 불명확했던 핵 비대 현상을 이해하는 데 중요한 단서를 제시한다.
연구팀은 암세포에 흔한 DNA 복제 스트레스(세포가 DNA를 복사할 때 생기는 부담·오류 신호)가 핵 속 ‘액틴’ 단백질을 뭉치게(중합) 만들고, 이것이 핵을 크게 만드는 직접 원인임을 확인했다.
이번 결과는 암세포 핵 크기의 변화가 단순히 ‘암세포가 이득을 보기 위해 진화한 형질’이 아닐 수 있다는 점을 보여준다. 오히려 이는 스트레스 상황에서의 임시방편적 반응이며, 암세포의 전이 가능성에는 제약을 줄 수 있음을 시사한다.
따라서 향후 연구에서는 핵 크기 변화가 암 치료 표적이 될 수 있는지, 또는 전이 억제와 관련된 단서가 될 수 있는지 탐구할 필요가 있다. 즉, 핵 비대는 복제 스트레스에 대한 일시적 반응일 수 있으며, 반드시 암의 악성화를 뜻한다고만 볼 수는 없다는 뜻이다.
이 결론은 △유전자 기능 스크리닝(수천 개 유전자를 차례로 억제해, 핵 크기 조절에 관여하는 주요 유전자를 찾아냄), △전사체 분석(핵이 커질 때 어떤 유전자 프로그램이 활성화되는지 확인), △3차원 유전체 구조 분석(Hi-C)으로 핵 비대가 단순한 크기 변화가 아니라, DNA의 접힘과 유전자 배치 변화와 연결되어 있음을 규명하고 △생쥐 이식 모델(핵이 커진 암세포가 실제로 이동성과 전이 능력이 떨어진다는 사실)로 입증했다.
의과학대학원 김준 교수는 “DNA 복제 스트레스가 핵 크기 균형을 무너뜨린다는 사실을 확인해, 오래된 병리 관찰의 배경 기전을 설명했다”며 “앞으로 암 진단과 전이 예측에 핵의 구조 변화를 새로운 지표로 활용할 가능성이 열렸다”고 말했다.
이번 연구에는 KAIST 의과학대학원 김창곤 박사(현 고려대 안암병원 혈액종양내과)와 홍세명 박사과정생이 공동 제1저자로 참여했으며, 결과는 국제학술지 PNAS(미국국립과학원회보) 온라인판에 9월 9일자로 게재되었다.
※ 논문 제목: Replication stress-induced nuclear hypertrophy alters chromatin topology and impacts cancer cell fitness
※ DOI: https://doi.org/10.1073/pnas.2424709122
한편, 본 연구는 한국연구재단 중견연구 및 선도연구센터(ERC) 사업의 지원을 받았다.
치매 등 비밀 밝힐 뇌 면역 유전자 규명
사람마다 가지고 있는 유전자 차이가 어릴 때 뇌가 자라나는 과정에서는 크게 문제가 되지 않지만, 나이가 들어서 치매 등 뇌 질환이 생길 때는 왜 어떤 사람이 더 잘 걸리는지 오랫동안 수수께끼였다. 국내 연구진이 최근 뇌 속 별아교세포가 면역 반응을 켜고 끄는 스위치를 지니고 있으며, 이 스위치를 조절하는 핵심유전자를 알아내고 성인이 된 후 뇌 질환에 대한 개인의 취약성을 결정한다는 점을 세계 최초로 밝혀냈다. 향후 알츠하이머병의 퇴행성뇌질환을 포함한 다양한 뇌 면역 반응의 원인 규명과 치료 전략의 중요한 단서를 제공했다.
우리 대학은 생명과학과 정인경 교수와 기초과학연구원(원장 노도영, IBS) 혈관 연구단 정원석 부연구단장(겸 KAIST 생명과학과 교수) 공동연구팀이 별아교세포(astrocyte) 발달 과정에서 특정 유전자가 성인기 뇌 면역 반응 조절에 핵심 역할을 한다는 사실을 세계 최초로 규명했다고 24일 밝혔다.
연구팀은 쥐 모델을 활용해 뇌·척수에 차지하는 비중이 높은 별아교세포의 발달 시기별 유전자 조절 프로그램을 정밀 분석한 결과, ‘NR3C1(Glucocorticoid Receptor)’ 유전자가 출생 직후 발달 단계에서 장기적 면역 반응 억제의 핵심 조절자임을 밝혀냈다.
연구팀은 최신 ‘3차원 후성유전체 분석 기술(DNA에 유전정보를 커짐·꺼짐분석 기술)’을 적용해 별아교세포 발달 과정에서의 전사체, 염색질 접근성, ‘3차원 게놈 상호작용(DNA가 공간 속에서 어떻게 접히고 서로 만나는지를 보는 기술)’을 통합 분석했다.
그 결과, 별아교세포가 자라나는 과정에서 55개의 중요한 유전자 조절 단백질(전사인자)을 찾아냈다. 그중에서도 NR3C1이라는 유전자가 아기 뇌가 처음 발달할 때 “가장 중요한 스위치” 역할을 한다는 사실을 밝혔다. 흥미로운 점은, 이 유전자가 없다고 해서 어릴 때 뇌 발달이 크게 망가지지는 않았다.
하지만 성인이 된 뒤 뇌에 자가면역성 질환(몸의 면역체계가 자기 뇌를 공격하는 병)을 일으키면, NR3C1이 없는 경우 뇌가 과도하게 염증 반응을 일으키고 병이 훨씬 심해졌다.
즉, NR3C1은 아기 뇌에서 “면역 스위치를 미리 켜둘 준비를 하는 엔진 예열 버튼”인 ‘후성유전적 프라이밍* 제어 역할을 하며, 이 덕분에 성인이 된 뒤 뇌가 과도한 면역 반응을 일으키지 않도록 지켜준다는 것을 알아냈다.
*후성유전적 프라이밍(epigenetic priming)유전자가 당장 발현되지 않더라도, 필요할 때 즉시 켜질 수 있게 스위치를 미리 준비해 두는 과정
정원석 IBS 부연구단장(KAIST 생명과학과 교수)은 “별아교세포의 면역 기능이 후성유전적 기억에 의해 조절된다는 사실을 처음 규명했다”며, “향후 알츠하이머병 등 퇴행성 뇌 질환의 원인 규명에 기여할 것”이라고 말했다.
KAIST 생명과학과 정인경 교수는 “이번 연구는 별아교세포 발달의 특정 시기(시간적 조절 창, window of susceptibility)가 성인기와 노인기 뇌 질환의 취약성을 좌우할 수 있음을 보여줬다”며, “게놈 3차원 구조 기반 연구가 다발성경화증(MS) 등 면역성 뇌 질환의 새로운 발병 원리 이해와 치료 전략 개발로 이어질 것”이라고 밝혔다.
이번 연구 결과는 KAIST 생명과학과 박성완 박사와 박현지 박사과정 학생이 제 1저자로 국제 학술지 네이처 커뮤니케이션스(Nature Communications, IF 15.7) 9월 22일자 온라인판에 게재됐다.
※논문명: NR3C1-mediated epigenetic regulation suppresses astrocytic immune responses in mice, DOI: https://www.nature.com/articles/s41467-025-64088-5
또한 저널은 9월 17일, 해당 연구를 소개한 해설 글을 게재했다. https://www.nature.com/articles/s41467-025-64102-w
한편 이번 연구는 서경배과학재단, 보건복지부, 과학기술정보통신부, IBS의 지원을 받아 수행됐다.
AI와 뇌신호 빛 제어로 파킨슨병 조기진단·치료법 제시
모하마드 알리, 마이클 J. 폭스 등 세계적으로 잘 알려진 인물들이 파킨슨병으로 오랜 시간 투병해 왔다. 이 병은 떨림, 강직, 서동, 자세 불안정 등 복합적인 운동 증상이 나타나지만, 기존 검사법으로는 발병 초기 변화를 민감하게 포착하기 어렵고, 뇌 신호 조절을 겨냥한 약물 역시 임상에서 효과가 제한적이었다. 최근 한국 연구진이 AI와 광유전학을 융합한 기술을 통해 파킨슨병의 정밀 진단과 치료 평가 도구로 활용 가능성을 입증하고, 차세대 맞춤형 치료제 개발 전략을 제시하는 데 성공했다.
우리 대학 생명과학과 허원도 석좌교수 연구팀이 뇌인지과학과 김대수 교수(생명과학기술대학 학장) 연구팀, 기초과학연구원(IBS 원장 노도영) 이창준 단장(인지 및 사회성 연구단) 연구팀과 함께 인공지능(AI) 분석과 광유전학(optogenetics)을 결합해 파킨슨병 동물 모델에서 조기·정밀 진단과 치료 가능성을 동시에 입증하는 전임상 연구 성과를 거두었다고 22일 밝혔다.
연구팀은 두 단계의 중증도를 가진 파킨슨병 생쥐 모델(알파-시누클레인 단백질 이상으로 파킨슨병을 유발한 실험용 수컷 생쥐로, 사람의 파킨슨병을 모사하여 진단·치료 연구에 활용되는 표준 모델)을 구축하고, 뇌인지과학과 김대수 교수 연구팀과의 공동 연구를 통해 인공지능 기반 3D 자세 추정 기술을 행동 분석에 도입했다.
연구팀은 파킨슨병 생쥐의 걸음걸이, 손발 움직임, 떨림 같은 340여 가지 행동 신호를 인공지능으로 분석해 하나의 점수(파킨슨 행동지수)로 만들었습니다. 이 지수를 통해 파킨슨병을 발병 초기부터 기존 검사보다 더 정확하게 구분할 수 있음을 확인했습니다.
분석 결과, 파킨슨 행동지수는 질환 유도 2주 시점부터 대조군 대비 유의한 차이를 보였으며, 기존 운동능력 검사보다 더 민감하게 질환 정도를 판별했다. 예를 들어 보폭 변화, 손발 움직임 비대칭, 흉부 떨림 같은 행동이 파킨슨병 진단의 핵심 요인임을 밝혔다. 따라서 상위 20개 행동 표지에는 손·발 비대칭, 보폭·자세 변화, 흉부 고빈도 성분 증가 등이 포함됐다.
이러한 행동 지표가 단순히 운동 기능 저하를 나타 내는 것인지, 파킨슨병에만 나타나는 특이한 변화인지 확인하기 위해, 연구팀은 IBS 이창준 단장팀과 함께 루게릭병 생쥐 모델에도 같은 분석을 적용했다. 파킨슨병과 루게릭병(ALS) 모두 운동 기능에 문제가 생기는 질환이기에 단순히 운동이 나빠진 것 때문이라면 두 질환 모두에서 높은 파킨슨 행동지수가 나와야 한다.
분석 결과, 루게릭병(ALS) 동물 모델은 운동 기능이 떨어졌음에도 파킨슨병에서 보였던 높은 파킨슨 행동지수는 나타나지 않았다. 오히려 낮은 수준을 유지했으며, 행동 변화 양상도 파킨슨병과는 확연히 달랐다. 이는 이번에 개발한 파킨슨 행동지수가 단순한 운동 장애가 아니라 파킨슨병에만 나타나는 특징적인 변화와 직접적으로 관련됨을 보여준다.
연구팀은 파킨슨병 치료를 위해서 뇌 신경 세포기능을 빛으로 정밀하게 조절하는 광유전학 기술 ‘옵토렛(optoRET)’을 활용했다.
그 결과, 파킨슨병 동물 모델에서 걷기와 팔다리 움직임이 더 매끄러워지고 떨림 증상이 줄어드는 효과가 확인됐다. 특히 하루 걸러 한 번 빛을 쏘는 방식(격일 주기)이 가장 효과적이었으며, 뇌 속 도파민 신경세포도 보호되는 경향을 보였다.
허원도 석좌교수는 “이번 연구는 인공지능 기반 행동 분석과 광유전학을 결합해 파킨슨병의 조기진단–치료평가–기전검증을 하나로 잇는 전임상 프레임을 세계 최초로 구현했다”라며, “향후 환자 맞춤형 치료제와 정밀의료로 이어질 중요한 토대를 마련했다”고 밝혔다.
우리 대학 생명과학연구소 현보배 박사후연구원이 제 1저자인 이번 연구 결과는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications) 온라인판에 8월 21일에 게재됐다. 또한, 현 박사는 보건산업진흥원의 ‘글로벌 의사과학자 양성사업’ 지원으로 하버드 의과대학 맥린병원에서 이번 성과를 기반으로 한 파킨슨병 세포 치료제 고도화 연구를 이어가고 있다.
※논문명: Integrating artificial intelligence and optogenetics for Parkinson's disease diagnosis and therapeutics in male mice
※DOI: https://doi.org/10.1038/s41467-025-63025-w
한편, 이번 연구는 KAIST 글로벌 특이점사업, 과학기술정보통신부·한국연구재단, IBS 인지 및 사회성 연구단, 보건복지부·한국보건산업진흥원 지원으로 수행됐다.
유전자 가위로 유전자 켜고 끄기 동시에 가능하다
유전자를 켜고 끈다는 것은 마치 전등 스위치를 올리고 내리듯, 세포 속 유전자의 작동 여부를 조절하여 켜면 단백질이나 물질 생산이 활발해지고, 끄면 생산이 억제된다. 한국 연구진이 기존에 ‘끄는 기능’에 치중됐던 한계를 넘어, 유전자를 켜고 끄는 것을 동시에 구현할 수 있는 혁신적 시스템을 세계 최초로 개발하며 합성생물학 기반 바이오산업의 새로운 패러다임을 열었다.
우리 대학 공학생물학대학원(생명과학과 겸임) 이주영 교수와 국가과학기술연구회(이사장 김영식) 산하 한국화학연구원(원장 이영국) 노명현 박사 공동연구팀이 대장균에서 원하는 유전자를 동시에 켜고 끄는 것이 가능한 새로운 이중모드 크리스퍼(CRISPR) 유전자 가위 시스템을 개발했다고 21일 밝혔다.
대장균은 실험이 쉽고 산업적 활용으로 바로 이어질 수 있는 대표적인 미생물이다. 한편, 유전자 가위(CRISPR) 기술은 21세기 생명공학의 가장 혁신적인 도구로 평가받고 있다.
특히 합성생물학의 기반이 되는 박테리아는 구조가 단순하고 빠르게 증식하면서도 다양한 유용 물질을 생산할 수 있다. 따라서 박테리아에서의 유전자 활성화는 ‘미생물 공장’을 설계하는 핵심 기술로, 산업적 가치가 매우 크다.
합성생물학의 핵심은 생명체의 유전자 회로를 프로그래밍하듯 설계해 원하는 기능을 수행하도록 만드는 것이다. 마치 전자회로에서 스위치를 켜고 끄듯, 특정 유전자는 활성화하고 다른 유전자는 억제해 대사경로를 최적화하는 기술이 필요하다. 연구팀이 개발한 이중모드 유전자 가위는 바로 이러한 정밀한 유전자 조절을 가능하게 하는 핵심 도구다.
기존 유전자 가위(CRISPR)는 주로 ‘끄기(억제)’ 기능에 특화되어 유전자 발현을 막는 데는 뛰어났지만, 반대로 유전자를 켜는 기능은 매우 제한적이었다.
또한 CRISPR가 작동하려면 특정 DNA 인식 서열(PAM, protospacer adjacent motif)이 필요한데, 기존 시스템은 PAM 인식 범위가 좁아 조절할 수 있는 유전자의 폭이 제한적이었다.
게다가 진핵세포(사람·식물·동물 세포)에서는 CRISPR 기반 활성화(CRISPRa)가 어느 정도 발전했지만, 박테리아에서는 내부 전사조절 메커니즘 차이로 유전자 ‘켜기’가 제대로 되지 않는 한계가 있었다.
연구팀은 이 한계를 극복하고자 표적을 확장하여 더 많은 유전자에 접근 가능하도록 하고 대장균 단백질을 활용하여 유전자 활성화 성능을 대폭 향상하였다.
그 결과, 기존에는 “끄는 것 위주”였던 유전자 가위가, 이번에는 켜기와 끄기를 동시에 제어할 수 있는 시스템으로 발전하게 된 것이다.
개발된 시스템의 성능 검증 결과는 매우 인상적이었다. 유전자를 켜는 실험에서는 최대 4.9배까지 발현량이 증가했고, 끄는 실험에서는 83%까지 억제할 수 있었다.
더욱 놀라운 것은 두 개의 서로 다른 유전자를 동시에 조절할 수 있다는 점이었다. 실제로 한 유전자는 8.6배 활성화하면서 동시에 다른 유전자는 90% 억제하는 데 성공했다.
연구팀은 이 기술의 실용성을 입증하기 위해 항암효과가 있는 보라색 색소인 ‘바이올라세인’ 생산량 늘리기에 도전했다. 대장균의 모든 유전자를 대상으로 하는 대규모 실험을 통해 바이올라세인 생산에 도움이 되는 유전자들을 찾아냈다.
그 결과, 단백질 생산을 도와주는 ‘rluC’ 유전자를 켜면 2.9배, 세포를 분열하고 나누어지도록 하는 ‘ftsA’ 유전자를 끄면 3.0배 생산량이 늘어났다. 두 유전자를 동시에 조절했을 때는 더욱 큰 시너지 효과가 나타나 무려 3.7배의 생산량 증가를 달성했다.
한국화학연구원 노명현 박사는 “박테리아에서도 정밀한 유전자 활성화가 가능해졌다”며 “합성생물학 기반 바이오산업 발전에 크게 기여할 것”이라고 말했다.
이주영 교수는 “이번 연구는 유전자 가위와 합성생물학을 결합해 미생물 생산 플랫폼의 효율을 크게 높인 성과”라며 “하나의 시스템으로 복잡한 유전자 네트워크를 제어할 수 있어 새로운 연구 패러다임을 제시했다”고 밝혔다. 또한 “이번 기술은 다른 박테리아 종에서도 작동이 확인돼, 바이오 의약품·화학물질·연료 생산 등 다양한 분야에 활용될 수 있다”고 덧붙였다.
우리 대학 생명과학연구소 문수영 박사후 연구원이 제1 저자인 이번 연구 결과는 분자생물학 분야 최고 권위지인 ‘Nucleic Acids Research'에 지난 8월 21일 온라인 게재됐다.
※ 논문명: Dual-mode CRISPRa/i for genome-scale metabolic rewiring in Escherichia coli
(저자 정보 : 문수영(KAIST, 제1 저자), 김미리(한국화학연구원), 안난영(KAIST), 노명현(한국화학연구원, 교신저자), 이주영(KAIST, 교신저자) 총 5명)
※DOI: 10.1093/nar/gkaf818
한편, 이번 연구는 과학기술정보통신부 한국연구재단과 보스턴코리아 공동연구개발 사업의 지원으로 수행됐다.
유전자 교정으로 기후·식량 해법 모색...김진수 교수 34억 원 주식 기부
우리 대학은 공학생물대학원 김진수 교수가 기후 재난과 농업 위기 극복을 위해 ㈜툴젠 주식 8만 5천주를 기부했다고 16일 밝혔다. 해당 주식은 9월 15일 기준 약 34억 3천8백만 원 상당으로, KAIST는 이를 활용해 농업·생명과학 분야의 혁신적 연구를 적극 추진할 계획이다.
이번 기부금은 올해 하반기 설립 예정인 ‘식물기반 탄소포집연구센터(Center for Plant-based Carbon Capture)’에 사용되며, KAIST는 이를 기반으로 기후 변화 대응과 글로벌 식량 안보 문제 해결을 위한 연구를 본격화해, 지속 가능한 미래 사회 구현에 기여할 방침이다.
연구소는 식물과 미세조류(algae)의 광합성 효율을 극대화하는 기술 개발에 집중한다. 이를 통해 대기 중 이산화탄소 흡수율을 높여 탄소중립 실현에 기여하고, 동시에 식량 생산성을 획기적으로 향상시켜 식량 안보에 기여하는 것이 목표다.
핵심 기술은 김진수 교수가 세계 최초로 개발한 ‘세포소기관(엽록체·미토콘드리아) DNA 직접 교정 기술’이다. 햇빛을 받아 광합성을 담당하는 엽록체와 세포의 에너지 발전소 역할을 하는 미토콘드리아는 자체 DNA를 갖고 있는데, 기존 크리스퍼(CRISPR) 기술로는 교정이 불가능했다. 이번 기술은 이 DNA까지 정밀 교정할 수 있어 향후 난치성 유전질환 연구와 치료에도 활용될 수 있다.
또한 이 기술로 개발한 작물은 원래 식물에 있는 DNA를 직접 교정하는 방식이라 외부 유전자를 삽입하지 않기 때문에 GMO(유전자변형생물체)가 아니라, 미국, 일본 등에서 ‘비유전자변형생물체(Non-GMO)’로 인정받는다. 이는 규제 장벽이 낮고 소비자 수용성을 높여, 기술 상용화와 시장 진출 가능성을 크게 확대한다.
우리 대학은 이번 연구소 설립을 통해 기후 변화 속 식량 위기 극복, 농업 생산성의 획기적 향상, 지속 가능한 탄소 저감 방안 제시, 차세대 바이오에너지 산업 창출 등 다양한 성과를 기대하고 있다.
김 교수의 핵심 기술을 적용하면, 이산화탄소를 많이 흡수하고 에너지원으로 활용할 수 있는 고효율 작물을 대량 생산할 수 있다. 이 작물은 친환경 항공 연료인 지속가능항공유(SAF)의 원료로 쓰일 수 있어, 한국이 미래 항공 연료 강국으로 도약하는 데 중요한 발판이 될 전망이다.
김 교수는 “인류가 직면한 기후 변화와 식량 안보 위기는 더 이상 외면할 수 없는 시대적 과제”라며 “유전자 교정 과학기술의 발전과 인력 양성은 물론 산학연 협력을 바탕으로 지속가능한 미래를 만드는데 기여할 수 있기를 바라는 마음으로 기부를 결심했다”고 밝혔다
이광형 KAIST 총장은 “김진수 교수님의 기부는 과학자의 헌신과 사회적 책임을 보여주는 귀감”이라며, “KAIST는 식물기반 탄소포집연구센터를 통해 혁신 기술을 선도하고 글로벌 기후·식량 위기 해결에 앞장서겠다”고 강조했다.
조울병 맞춤형 치료 가능성 열었다
유명한 화가 빈센트 반 고흐(Vincent van Gogh)도 앓았던 것으로 알려진 ‘조울병’(양극성 장애, Bipolar Disorder)은 조증과 우울증이 반복되는 뇌 질환이다. 이 병은 전 세계 인구의 약 1~2%가 앓고 있으며, 극단적 선택의 위험이 일반인보다 10~30배 높다고 알려져 있다. 그러나 환자마다 대표 치료제인 ‘리튬(lithium)’에 대한 반응이 크게 달라 맞춤형 치료법 개발이 절실한 상황이다. 이에 우리 대학 연구진이 리튬 반응성 차이를 규명하고, 이를 기반으로 환자 맞춤형 치료제 개발과 신약 개발 플랫폼 활용 가능성을 새롭게 제시했다.
우리 대학 의과학대학원 한진주 교수 연구팀이 리튬 반응성에 따른 성상세포(astrocyte)의 대사 차이를 최초로 규명하고, 이를 토대로 조울병의 맞춤형 치료제 개발 가능성을 제시했다고 10일 밝혔다.
성상세포는 뇌에 존재하는 별모양을 한 세포로, 신경세포에 영양을 공급하고 뇌 환경을 유지하는 ‘신경세포의 조력자’역할을 한다.
한진주 교수 연구팀은 기존의 신경세포 중심 연구 패러다임에서 벗어나, 뇌 세포의 절반을 차지하는 성상세포에 주목해, 이 세포가 양극성 장애의 대사 조절에서 핵심적인 역할을 한다는 사실을 밝혀냈다.
연구팀은 환자의 세포로부터 제작한 줄기세포(iPSC)를 성상세포로 분화(줄기세포가 특정 기능을 가진 세포로 성장·특화되는 과정) 시킨 뒤 관찰했다. 그 결과, 리튬에 반응하는지 여부에 따라 세포의 에너지 대사 방식이 크게 달라지는 것이 확인됐다.
리튬 반응이 없는 경우, 세포 안에 지질 방울(lipid droplet, 아주 작은 지방저장소)가 과도하게 쌓이고, 미토콘드리아(세포의 발전소) 기능이 떨어지며, 포도당 분해 과정이 과도하게 활성화되고, 젖산이 지나치게 많이 분비되는 등 뚜렷한 대사 이상이 나타났다.
특히 리튬 반응 환자의 성상세포는 리튬 처리 시 지질 방울이 감소했으나, 비반응 환자에서는 개선 효과가 없었다. 더불어 환자 유형에 따라 성상세포가 생성하는 대사 산물에도 뚜렷한 차이가 확인되었다. 즉, 리튬 반응에 따라 세포의 에너지 공장이 제대로 작동하지 못하고, 대체 경로를 과도하게 활용하면서 부산물이 쌓이는 현상이 확인된 것이다.
특히 이번 성과는 양극성 장애(조울병)에서 성상세포가 에너지 대사를 조절하는 핵심 역할을 한다는 점을 입증한 것으로, 리튬 반응성 차이를 설명하고 환자별 맞춤 치료 전략의 길을 연 중요한 성과로 평가된다.
한진주 교수는 “성상세포를 표적으로 한 새로운 치료제 개발이 가능해져, 기존 약물에 반응하지 못하던 환자들에게도 더 나은 치료 전략을 제공할 수 있을 것”이라고 말했다.
이번 연구 성과는 신경정신질환 분야 세계적인 학술지인 몰레큘라 사이카이트리 (Molecular Psychiatry) 온라인판에 8월 22일자로 게재되었다.
※ 논문명: Differential effects of lithium on metabolic dysfunctions in astrocytes derived from bipolar disorder patients DOI: https://doi.org/10.1038/s41380-025-03176-w
※ 저자 정보: 의과학대학원 백규현, 김다연, 손그림, 도현수 박사(KAIST, 공동 제1 저자) 및 한진주 (KAIST, 교신저자)
한편, 이번 연구는 한국연구재단과 한국환경산업기술원 등의 지원을 받아 수행됐다.
"왜 우울한가요?" 우울증 원인 규명하고 치료 실마리 밝혀
우울증(Major Depressive Disorder, MDD)은 전 세계적으로 가장 흔한 정신질환 중 하나지만, 그 분자적 발생 원인*은 여전히 명확히 규명되지 않은 상태다. 국내 연구진은 우울증이 단순한 신경세포 손상 때문만이 아니라, 특정 신경 신호 경로의 교란으로 발생할 수 있음을 밝혀내며, 특히 고령 우울증 환자에게 기존 항우울제가 반응하지 않는 분자적 원인을 규명했다. 이번 연구는 광유전학 기술을 활용한 신경 신호 조절 치료의 가능성을 제시했고, 고령 우울증 환자에게도 향후 ‘Numb’ 단백질을 표적으로 하는 새로운 치료 전략 개발의 실마리를 제공했다.
*분자적 발생 원인: 발병 원인에 대해 뇌 속 분자나 단백질, 유전자 수준에서 설명
우리 대학 생명과학과 허원도 석좌교수 연구팀, 국립과학수사연구원(국과수, 원장 이봉우) 이민주 법의관, 아주대학교의료원 (의료원장 한상욱) 병리과 김석휘 교수 연구팀과 협력하여, 극단 선택을 한 환자의 뇌 조직의 RNA 염기 분석과 면역조직화학 분석을 통해 우울증의 새로운 분자 기전을 규명하고, 광유전학(optogenetics) 기술을 통해 신경 회복을 유도하는 신호 경로를 조절함으로써 항우울 효과를 회복할 수 있음을 동물모델에서 증명했다고 19일 밝혔다.
연구팀은 기억과 감정을 담당하는 뇌 부위인 해마(hippocampus), 특히 ‘치아이랑(dentate gyrus, DG)’이라는 부분에 주목했다. 치아이랑은 해마 안에 정보가 처음으로 들어올 때 새로운 기억 생성, 신경세포가 자라고 감정 조절과 우울증과 연관이 있는 공간에 해당된다.
2가지의 대표적인 우울증 마우스 모델(콜티코스테로이드 스트레스 모델 및 만성 예측 불가능 스트레스 모델)을 이용해 스트레스가 유발될 때, 이 DG 부위에서 성장인자(FGF)라는 신호물질을 받아서 세포 안의 성장·분화 명령을 전달하는‘FGFR1(Fibroblast Growth Factor Receptor 1)’이라는 신호 수용체가 눈에 띄게 늘어났다.
이후, FGFR1 유전자라는 특별 조건을 제거한 ‘조건부 녹아웃(conditional knockout,cKO) 마우스’를 활용하여 해당 수용체가 제거된 상황에서는 스트레스에 더 취약하고 우울 증상을 더 빠르게 나타낸다는 점을 규명했다. 이는 FGFR1이 정상적인 신경 조절 및 스트레스 저항에 중요한 역할을 한다는 것을 시사한다.
이어서 연구팀은 광유전학 기술을 활용해 스트레스 저항하는 데 매우 중요한 FGFR1을 빛으로 활성화할 수 있는 ‘optoFGFR1 시스템’을 개발, FGFR1이 부족한 우울증 마우스 모델에서 이를 활성화함으로써 항우울 효과가 회복되는 현상을 관찰했다. 즉, FGFR1 신호 활성화만으로도 우울 행동이 개선될 수 있음을 실험적으로 입증한 것이다.
하지만 놀랍게도 노화된 우울증 마우스 모델에서는‘optoFGFR1 시스템’을 통한 FGFR1 신호 활성화에도 항우울 효과가 나타나지 않았다. 이에 대한 원인을 탐색하던 중, 연구팀은‘Numb’이라는 단백질이 노화된 뇌에서 과도하게 발현돼 FGFR1의 신호전달을 방해한다는 사실을 밝혀냈다.
실제로 연구팀이 수행한 사후 인간 뇌 조직 분석에서도 나이가 든 우울증 환자에게서만 Numb 단백질의 특이적 과발현이 관찰됐다. 이후, 마우스 모델에 Numb을 억제하는 유전자 조절 도구(shRNA)를 발현시키고 동시에 FGFR1 신호를 활성화한 결과, 회복되지 않던 노화된 우울증 마우스 모델에서도 신경 발생과 행동이 정상 수준으로 회복되었다. 이는 Numb 단백질이 FGFR1 신호 경로의 ‘차단자’ 역할을 하며, 해마의 항우울 기전을 막는 주요 인자임을 보여준다.
KAIST 허원도 석좌교수는 “이번 연구는 우울증이 단순한 신경세포 손상만이 아니라, 특정 신경신호 경로의 교란에 의해 발생할 수 있음을 밝힌 데 큰 의미가 있다. 특히, 고령 환자에게 항우울제가 잘 듣지 않는 이유를 분자적으로 규명하고, 향후 Numb 단백질을 표적으로 하는 새로운 치료법 개발의 실마리를 제공할 것”이라고 말했다.
이어 “또한, KAIST의 뇌신경과학 역량과 국과수의 법의학 기반 뇌 분석 기술이 결합된 이번 융합연구를 통해, 향후 정신 질환 기초 연구와 임상 적용 간 연결 고리가 될 것으로 기대된다”라고 강조했다.
KAIST 생명과학과 신종필 박사과정이 제1 저자로 주도한 이번 연구는 국제 학술지 ‘익스페리멘탈 앤 몰리큘라 메디슨(Experimental & Molecular Medicine)’에 2025년 8월 15일 자로 게재됐다.
- 논문명: Dysregulation of the FGFR1 signaling in hippocampus facilitates depressive disorder
- DOI: https://doi.org/10.1038/s12276-025-01519-9
한편, 이번 연구는 과학기술정보통신부 한국연구재단 ASTRA 및 바이오 의료개발 기술 사업의 지원을 받았다.