본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4
최신순
조회순
바이오 경로 이미지 분석하는 AI 최초 개발
유전자, 단백질, 대사물질 등 복잡한 정보를 표현하는 바이오 경로 이미지는 중요한 연구 결과를 내포하고 있지만, 이미지 기반 정보 추출에 대해 그동안 충분한 연구가 이뤄지지 않았다. 이에 우리 연구진은 바이오 경로 정보를 자동으로 추출할 수 있는 인공지능 프레임워크를 개발했다. 우리 대학 생명화학공학과 김현욱 교수 연구팀이 바이오 경로 이미지에서 유전자와 대사물질 정보를 자동으로 추출하는 기계학습 기반의 ‘바이오 경로 정보 추출 프레임워크(이하 EBPI, Extraction of Biological Pathway Information)’를 개발했다고 28일 밝혔다. 연구팀이 개발한 EBPI는 문헌에서 추출한 이미지 속의 화살표와 텍스트를 인식하고, 이를 기반으로 바이오 경로를 편집 가능한 표의 형태로 재구성한다. 객체 감지 모델 등의 기계학습을 사용해 경로 이미지 내 화살표의 위치와 방향을 감지하고, 이미지 속 텍스트를 유전자, 단백질, 대사물질로 분류한다. 그 후 추출된 정보를 통합해 경로 정보를 표 형식으로 제공한다. 연구팀은 74,853편의 논문에서 추출한 바이오 경로 이미지와 기존 수작업으로 작성된 경로 지도를 비교하며 EBPI의 성능을 검증했다. 그 결과, 높은 정확도로 바이오 경로 정보가 자동으로 추출됐음을 확인했다. EBPI를 사용해 대표적인 바이오 경로 데이터베이스에 포함되지 않은 생화학 반응 정보를 대량의 문헌 내 바이오 경로 이미지로부터 추출하는 데에도 성공했다. 다양한 산업적 가치를 지닌 대사물질들의 생합성 관련 문헌을 EBPI로 분석한 결과, 문헌에서는 보고가 됐지만, 기존 데이터베이스에서는 누락된 생화학 반응들이 확인된 것이다. 화학산업에서 다양한 응용분야를 갖는 1,4-부탄디올, 2-메틸부티르산, 하이드록시티로솔, 레불린산 및 발레로락탐의 생합성 경로를 예시로 이러한 발견을 제시했다. 연구를 총괄한 김현욱 교수는 “이번 연구에서 개발된 EBPI는 대규모 문헌 데이터 분석에 있어 중요한 도구가 될 것이며 생명공학, 대사공학 및 합성생물학 분야에서 바이오 경로 이미지를 AI로 분석하는 최초의 사례로, 관련 연구의 실험 디자인 및 분석 시 유용하게 활용될 수 있을 것”이라고 밝혔다. 생명화학공학과 권문수 박사과정생과 이준규 박사과정생이 공동 제1 저자인 이번 연구는 대사공학 및 합성생물학 분야의 대표적 국제학술지인 대사공학(Metabolic Engineering, JCR 분야 상위 10% 이내)에 11월호에 게재됐다. ※ 논문명 : A machine learning framework for extracting information from biological pathway images in the literature ※ 저자 정보 : 권문수(한국과학기술원, 공동 제1 저자), 이준규(한국과학기술원, 공동 제1 저자), 김현욱(한국과학기술원, 교신저자) 포함 총 3명 한편 이번 연구는 과학기술정보통신부 한국연구재단 및 농촌진흥청의 농업미생물사업단의 지원을 받아 수행됐다.
2024.11.28
조회수 940
이제 골격근도 제작 가능하다
인체의 상당 부분을 차지하는 골격근을 이제 우리 연구진에 의해 랩온어칩과 같은 첨단 바이오 제조 기술을 적용해 안정적인 제작이 가능하게 됐다. 우리 대학 기계공학과 바이오미세유체 연구실 전성윤 교수 연구팀이 기계공학과 심기동 교수팀과 공동 연구를 통해, 체외 삼차원 환경에서 골격근 조직을 제작하는 바이오 미세유체시스템(Biomicrofluidic system)*을 개발했다고 27일 밝혔다. *바이오 미세유체시스템: 반도체 회로 제조 등에 사용되는 포토리소그래피(Photolithography) 공정 등을 기반으로 제작되는 마이크로 스케일의 시스템으로, 세포 및 생체조직 배양, 유동 생성 및 제어 등에 활용됨 연구팀은 해당 연구에서 자체 개발한 미세유체시스템을 사용해 골격근 조직 배양에 있어 큰 비중을 차지하는 하이드로겔의 구성 성분, 겔화 시간, 세포의 농도를 조절해 다양한 조건에서 삼차원 근육 밴드를 제작했다. 또한, 제작된 골격근 조직에 대해 근육의 수축력 및 반응 속도 측정과 함께 조직 형태, 기계적 특성, 골격근 성장 및 분화와 관련된 유전자 발현 비교 등 다양한 분석을 진행했다. 그리고 결과 분석을 통해 최적의 근육 조직 제작법을 확립했으며, 이러한 최적의 제작법으로 배양했을 때 견고한 골격근 조직이 제작된 것을 확인했다. 조직공학 및 배양 시스템 설계의 중요성을 강조한 이번 연구에서는, 하이드로젤 특성이 3D 근골격계 조직 발달에 미치는 영향을 조사했다. 주요 연구 결과에 따르면 하이드로젤의 기계적 특성은 세포 분화와 조직 기능을 높인다. 전성윤 교수는 “이번 연구는 인공 골격근 조직 배양에 있어 세포가 함유된 하이드로젤 제조에 대한 조건의 영향을 탐구함으로써 기존의 균일하지 못한 배양 방식에 가이드라인을 제시하고, 치료 응용 및 질병 모델링을 위한 조직 공학 최적화를 위한 필수 인사이트를 제공한다. 그리고 향후 골격근뿐 아니라 심장이나 골수와 같은 인공 생체 조직 제작에 도움을 주고 본 플랫폼은 노화나 우주 미세중력등에 의한 근감소증을 비롯한 여러 근골격계 질병 연구에 활용 될 것을 기대한다”고 말했다. 기계공학과 김재상 박사 및 김인우 박사과정 학생이 공동으로 진행한 이번 연구는, 국제 학술지인 ‘어드밴스드 펑셔널 머터리얼즈(Advanced functional materials)’에 2024년 10월 7일자로 게제됐다.(논문명 : Strategic Approaches in Generation of Robust Microphysiological 3D Musculoskeletal Tissue System. https://doi.org/10.1002/adfm.202410872) 한편 이번 연구는 한국연구재단 및 BK21 사업의 지원으로 수행되었다.
2024.11.27
조회수 1192
페트병 대체할 미생물 플라스틱 생산 성공하다
현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다. 우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다. 유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. *단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함 이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테리움에서 2-피론-4,6-다이카복실산과 4종의 피리딘 다이카복실산 (2,3-, 2,4-, 2,5-, 2,6-피리딘 다이카복실산)을 포함한 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 미생물 균주를 개발했다. 연구팀은 대사공학 기법을 통해 여러 유사 방향족 다이카복실산의 전구체로 사용되는 프로토카테츄산의 대사 흐름을 강화하고 전구체의 손실을 방지하는 플랫폼 미생물 균주를 구축했다. 이를 기반으로 전사체 분석을 통해 유전자 조작 타겟을 발굴해 76.17g/L의 2-피론-4,6-다이카복실산을 생산하였고, 3종의 피리딘 다이카복실산 생산 대사회로를 신규 발굴 및 구축하여 2.79g/L의 2,3-피리딘 다이카복실산, 0.49g/L의 2,4-피리딘 다이카복실산, 1.42g/L의 2,5-피리딘 다이카복실산을 생산하는 데 성공했다. 또한, 연구팀은 2,6-피리딘 다이카복실산 생합성 경로 구축 및 강화를 통해 15.01g/L의 생산을 확인하며 총 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 데 성공했다. 결론적으로, 2,4-, 2,5-, 2,6-피리딘 다이카복실산을 세계 최고 농도로 생산하는 데 성공하였다. 특히 2,4-, 2,5-피리딘 다이카복실산은 기존에 극미량 (mg/L) 생산되던 것을 g/L 규모의 생산까지 달성하였다. 이번 연구를 기반으로 다양한 폴리에스터 생산 산업공정으로의 응용이 기대되며, 유사 방향족 폴리에스터 생산에 관한 연구에도 적극 활용될 수 있으리라 기대된다. 교신저자인 이상엽 특훈교수는 “미생물을 기반으로 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 연구가 앞으로 미생물 기반의 바이오 단량체 산업이 석유 화학 기반의 화학산업을 대체하는 데 일조할 것”이라고 밝혔다. 해당 연구 결과는 국제 학술지인 `미국 국립과학원 회보(PNAS)'에 10월 30일 자 게재됐다. ※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids ※ 저자 정보 : 조재성(한국과학기술원, 공동 제1저자), 찌웨이 루오(한국과학기술원, 공동 제1저자), 문천우(한국과학기술원, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.11.07
조회수 1098
의과학대학원, 노벨생리의학상 수상자 드루 와이즈만 초청 강연 24일(목) 개최
우리 대학 의과학대학원이 오는 24일(목) 오후 2시에 대전 KAIST 본원에서 2023년 노벨생리의학상 수상자인 드루 와이즈만(Drew Weissmann) 교수 초청 강연을 개최한다. 의과학대학원이 주관하고 대학과 KAI-X의 지원을 받아 마련된 이번 초청 강연은 mRNA 기술을 이용한 백신과 신약 개발 기술에 관심이 있는 우리 대학 학생들에게 자신감과 도전 의식을 심어주고, 대중의 과학 흥미를 고취하고자 추진됐다. 드루 와이즈만 교수는 핵산 변형(nucleotide modification)을 통해 mRNA의 면역 과반응 억제를 유도하고 이를 통한 mRNA 백신 개발에 기여한 공로로 2023년 노벨생리의학상을 카리코 카탈린 교수와 함께 공동 수상했다. 일반적으로 위부에서 세포 내로 주입된 RNA는 선천성 면역반응을 강하게 유도하여 단백질 생산을 억제하고 과도한 염증 반응을 일으킬 수 있다. 드루 와이즈만 교수와 카리코 카탈린 교수 공동연구팀은 이 RNA 구성요소인 핵산의 구조변형을 통해 RNA에 의한 선천성 면역반응을 억제할 수 있음을 세계 최초로 보고했다. 이러한 RNA 핵산 변형 기술은 COVID-19 백신 개발의 핵심 요소로 사용되었고 전 세계 COVID-19 사망률 감소에 크게 기여했다. 현재 드루 와이즈만 교수는 의사과학자로서 미국 펜실바이나 의과대학(University of Pennsylvania Perelman School of Medicine)의 교수로 재직 중이다. 그는 mRNA를 활용한 백신·치료제 개발의 기초 연구와 산업화의 선두주자라는 평가를 받는다. 우리 대학 초청강연에서 드루 와이즈만 교수는 ‘mRNA-지질나노파티클 치료제 개발’을 주제로 mRNA 기술이 미래 신약 개발에 미치는 영향에 대해 강연할 계획이다. 또한, 대학원생들과의 오찬 간담회 및 교수들과의 공동연구 논의도 진행될 예정이다. 영어로 진행되는 본 초청 강연은 오는 24일(목) 오후 2시부터 KI빌딩 1층 퓨전홀에서 개최되며, 해당일 현장 접수로 신청 및 참여가 가능하다. 박수형 의과학대학원장은 "mRNA 기술은 백신과 치료제 분야의 미래 핵심기술로서 바이오 산업의 혁신과 변화를 주도하고 있다” 라고 전했다. 이어, “이번 노벨생리의학상 수상자 초청강연을 통해 의과학대학원의 뛰어난 연구 성과를 나누고 우수 인재 양성에도 최선을 다할 것”이라고 밝혔다. 한편, KAIST 의과학대학원은 앞으로 미래 핵심 바이오 기술 개발에 대한 교육과 강연을 적극적으로 개최하고, 이를 통해 의과학 연구의 중요성과 첨단바이오 산업에 대한 인식 확산에 노력할 것임을 전했다.
2024.10.17
조회수 1528
2024 대한민국 혁신창업상에 6개 기업 선정
우리 대학이 한국의 혁신 창업생태계를 한 단계 끌어올린 딥테크 스타트업의 우수 사례를 발굴하는 '2024 대한민국 혁신창업상' 수상기업을 11일 발표했다. '대한민국 혁신창업상'은 혁신적인 기술과 창의적인 아이디어로 무장한 스타트업이 우리나라의 경제를 이끌어갈 미래 성장동력으로 자리매김할 수 있도록 격려하기 위해 마련됐다. 우리 대학과 서울대, 중앙홀딩스가 협력하고 과학기술정보통신부가 후원하며, 시상식은 11일 서울대학교에서 개최된 '혁신창업국가 대한민국 국제심포지엄 2024'에서 진행됐다. 2022년 제정 후 3회차를 맞은 올해는 과학기술정보통신부 장관상을 받는 스탠다드에너지 주식회사와 메티스엑스(주)를 포함해 6개 기업이 수상의 영예를 안았다. 스탠다드에너지는 혁신적인 바나듐 이온 배터리를 개발해 친환경 에너지 산업을 선도하고 있으며 높은 에너지 효율, 배터리 수명, 안전성, 재활용성을 앞세워 세계 시장에서 입지를 넓혀갈 예정이다. 메티스엑스(주)는 CXL 기반의 지능형 메모리를 개발하는 시스템 반도체 스타트업이다. 인공지능 시대의 가장 큰 화두인 데이터 처리 및 분석을 가속해 글로벌 데이터 센터 투자 및 운영 비용을 크게 절감시키는 기술을 제공한다. KAIST 총장상에 선정된 주식회사 고바이오랩은 마이크로바이옴 기반의 혁신적인 바이오 솔루션을 제공하고 있다. 서울대 교원 창업기업으로 새로운 프로바이오틱스 제품 등 지속적인 연구개발을 통해 바이오테크의 새로운 패러다임을 제시하고 있다. 서울대학교 총장상은 페리지에어로스페이스가 받는다. 우리 대학 소속 학생 창업가가 이끄는 기업으로 민간 기업 중에서 최초로 자체 개발한 우주발사체의 국내 시험 비행을 진행하고 있으며, 스웨덴 국영우주기업·필리핀 우주청 등과의 협력을 바탕으로 해외 시장 진출을 위해 노력하고 있다. 중앙홀딩스회장상에는 알지노믹스 주식회사가 선정됐다. RNA 편집 기술을 기반으로 미충족 의학 수요가 높은 희귀 난치질환에 대한 유전자 치료제를 개발해 바이오 기술을 혁신하고 신약 개발의 새로운 지평을 열어가고 있다. 국가과학기술연구회 이사장상을 수상하는 ㈜메디인테크는 의료 영상 분석과 진단 지원 솔루션을 제공해 의료 분야의 디지털 전환을 이끌고 있다. 혁신적인 인공지능 기반 의료 기술로 병원의 진단 효율을 높이며, 첨단 의료 기술 발전에 기여하고 있다. 이날 열린 '혁신창업국가 대한민국 국제심포지엄 2024'에서는 6개 수상기업 및 우리 대학과 서울대 딥테크 창업기업이 다양한 혁신 기술을 소개했다. 또한, ▴글로벌 벤처캐피털(VC)인 SOSV의 모한 아이어(Mohan Iyer) 제너럴 파트너 ▴일본의 테크기업 디지털 개러지(Digital Garage)의 주니치 나카지마(Junichi Nakajima) 디렉터 ▴딥테크 전문 펀드를 운용하는 도쿄대 벤처캐피털(UTEC)의 토모타카 고지 CEO(現 일본벤처캐피탈협회 회장)가 기조 강연지로 나서 딥테크 스타트업 생태계 조성을 위한 조언을 전했다. 이와 함께, ▴백승욱 루닛 설립자 겸 의장 ▴임정민 시그나이트파트너스 투자총괄 ▴정태흠 아델파이벤처스 대표, ▴오준호 레인보우로보틱스 설립자 겸 CTO가 창업 경험과 아이디어를 공유하는 강연이 열렸다. 스타트업 생태계에서 대기업과 CVC의 역할을 논의하는 대담회도 함께 진행됐다.이광형 총장은 "수상기업들은 첨단기술의 상용화를 통해 새로운 시장을 창출하고 기술혁신으로 사회적 가치를 실현한 성과를 높게 평가받았다"라고 설명했다. 이어, 이 총장은 "대한민국 혁신창업상을 통해 창업가 정신을 고취하고 혁신 창업의 중요성을 널리 알리고 기술 창업가들에게 새로운 도전과 영감을 불어넣어 딥테크 창업생태계의 조성과 확산을 촉진하는 계기가 되길 바란다"라고 강조했다.
2024.09.11
조회수 1393
제2차 국제 인류세 심포지엄 개최
과학계에서는 지구 온난화와 같은 기후 변화 등 인류 활동으로 초래되어 오래도록 흔적을 남기는 지구 환경의 변동을 지칭하기 위해 ‘인류세’라는 지질시대 용어를 제안한 바 있다. 우리 대학은 국제 연구단체인 '인류세실무단'의 유일한 한국인 위원인 박범순 과학기술정책대학원 교수를 주축으로 '제2차 국제 인류세 심포지엄'을 개최하고 2일 오후 대전 본원에서 개막식열었다. '인류세를 투사하기: 다학문적 접근'을 주제로 열리는 이번 심포지엄에서는 개막식 당일을 포함해 3일간 인류세에 관한 토론과 미디어 아트 특별전이 이어진다. 산업 발전 이후 인간의 활동은 지구 시스템을 유례없이 빠른 속도와 거대한 규모로 변화시키고 있지만, 우리 사회의 발전상은 이를 감당하기엔 모자란 실정이다. 우리 대학은 인류세의 개념을 통해 이러한 변화를 감지하는 과학적 방법을 탐구하고, 인간뿐 아니라 비인간 존재와도 함께 살아가는 방식을 논의하기 위해 이번 심포지엄을 준비했다. 개막식에서는 인류세 연구의 국제적 석학들의 기조 강연이 이어진다. 박범순 인류세연구센터장은 학문 간의 경계를 넘나드는 것이 인류세 연구에 필수적인 이유와 이를 위해 필요한 방법론을 논의한다. 마틴 헤드(Martin J. Head) 캐나다 브록대학교 교수는 인류세의 시작점을 20세기 중반으로 설정하는 데 핵심적인 역할을 한 '대가속(Great Acceleration)'의 개념을 다시 짚어본다. 또한, 인류세 개념을 공식적인 지질연대표에 넣자는 과학자들의 제안을 지질학계가 기각했던 최근 이슈에 관해서도 설명할 예정이다. 위르겐 렌(Jürgen Renn) 독일 막스플랑크 지구인류학 연구소장은 인류세 개념에 대한 과학계의 결정이 인류의 자기 성찰 및 지구 시스템에 대한 책임의 문제와 어떻게 연관되는지를 논의한다. 개막식 후에는 심포지엄의 주제인 인류세를 투사하기(Projecting the Anthropocene)'를 미디어 아트로 만나는 특별전이 개최된다. 강이연 산업디자인학과 교수팀이 제작한 두 개의 영상 작품이 KAIST 본관 벽면에 투사되어, 인류세의 모습과 인류가 지구에 가하는 행위를 강렬하고 역동적으로 선보인다. 건물을 스크린 삼아 상영되는 영상은 배경음악과 어우러져 인류세가 촉발한 난제들을 이해하고, 이를 해결하기 위해서는 연구와 정책뿐만 아니라 예술적이고 창의적인 힘이 중요하다는 메시지를 담아 제작됐다. 심포지엄 둘째 날에는 지구과학, 생물학, 전기공학, 모빌리티 연구, 인문학, 사회과학, 산업디자인, 뉴미디어 아트 등 다양한 분야의 전문가들이 참여하는 발표 세션이 진행된다. 이를 통해 인류세를 감지하고, 그 안에서 살아가기 위한 기술적이고 사회적인 해법들을 함께 모색할 것이다. 마지막 날 열리는 비공개 워크샵에서는 예술 분야와 기술 분야의 창의적 협업 방안도 논의될 예정이다. 이번 국제 심포지엄을 총괄한 박범순 인류세연구센터장은 "인류세를 새로운 지질시대로 공인하자는 제안은 기각되었지만, 학계에서는 이 개념이 앞으로 여러 학문 분야와 예술 활동, 정책개발에 중요하게 사용될 것으로 전망한다"라고 강조했다. 이어, "지금은 인류세 연구가 새로운 단계로 진입한 시점이며, KAIST는 앞으로도 활발한 국제협력을 통해 인류세 개념을 더욱 정밀하게 정의하고 활용 가치를 높이기 위한 연구를 주도할 것"이라고 포부를 밝혔다. '제2차 국제 인류세 심포지엄'은 모든 강연을 영어로 진행하며, 인류세에 관심 있는 사람이라면 누구나 현장에 방문해 청강할 수 있다. 심포지엄 세부 일정 및 인류세연구센터에 대한 자세한 내용은 인류세연구센터 홈페이지(https://anthropocenestudies.com/)에서 확인할 수 있다 우리 대학 인류세연구센터는 한국연구재단의 선도연구센터사업 융합부문에 선정되어 2018년 설립되었으며, 인류세의 개념을 확산하고 관련 연구를 주도적으로 이끌어가고 있다.
2024.09.03
조회수 1136
융복합연구센터 이채석 책임연구원, 대전시장 유공표창 수상
공과대학 융복합연구센터(센터장 이재우) 지능융합팀 이채석 책임연구원이 5일 대전광역시 바이오 혁신신약 특화단지 선정에 기여한 공로를 인정받아 유공표창인 '대전광역시장상'을 받았다. 지능융합팀 팀장이자 대전시-KAIST 전략사업연구센터에 겸직 중인 이채석 책임연구원은 2024년 산업통상자원부의 '대전광역시 바이오 혁신신약 특화단지 선정'을 위한 워킹그룹에 참여해 특화단지 선정을 위한 전략을 수립하고 육성계획서 및 발표 자료 제작 실무와 바이오 신약 연구자 간 네트워킹 등의 업무를 수행했다. 특히, 우리 대학 바이오 신약 연구자 네트워킹 구축과 기술 기획에 주력해 대전광역시가 신약 개발의 최적지로 평가받을 수 있는 전략을 수립하고 혁신신약 창출 및 4대 초격차 기술 기반을 준비한 공로를 높게 평가받았다. 이채석 책임연구원은 "KAIST와 대전광역시, 대전테크노파크가 힘을 합친 원팀이 밤낮을 가리지 않는 추진력을 발휘해 이번 특화단지 유치 성과를 낼 수 있었으며, 대전 바이오 혁신신약 특화단지의 성공적인 추진에 최선을 다하겠다"라며 "앞으로도 KAIST가 기여할 수 있는 지역의 대형 국책 사업과 선도적인 연구를 위해 노력하겠다"라고 말했다. 한편, 대전광역시는 바이오 혁신신약 특화단지 지정으로 생산 유발효과 3조 8,280억 원, 부가가치 유발효과 1조 5,979억 원, 고용 유발효과 27,690명 등의 파급효과가 창출될 것으로 예상하고 있다.우리 대학 공과대학 융복합연구센터는 2023년 설립 이래 인공지능, 공간정보, 디지털트윈, 융합센서, 디지털 헬스케어 등 핵심 연구 분야를 기반으로 사회문제해결을 위한 다학제적 융복합연구를 수행하고 있다. '대전시-KAIST 전략사업 연구센터'를 공동으로 운영하고 있으며, '주소기반 실내내비게이션' 실증을 성공적으로 수행해 전국 확산을 위한 활발한 연구를 진행 중이다.
2024.08.07
조회수 2137
미래를 위한 대체 불가 바이오 제조 전략 제시
2021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다. 우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다. ※ 논문명 : Fungible and non-fungible technologies in biomanufacturing scale-up ※ 저자 정보 : 이상엽(한국과학기술원, 제1 저자, 교신저자) 1명 최근 신진 대사 공학과 합성 생물학의 급성장은 전통적인 화석 자원에 의존하는 제조 공정을 바이오 기반 대안으로 전환할 수 있는 잠재력을 보여주고 있다. 미생물 세포 공장을 통해 화학물질과 재료를 생산하는 바이오 기반 기술은 빠르게 발전하고 있으며, 이는 각각 5.7조 달러, 9.2조 달러, 22.5조 달러의 시장규모를 가진 화학, 식품 및 소비재 등 다양한 산업 부문에 혁신적인 변화를 가져오고 있다. 이는 2조 달러 규모의 제약시장 보다도 훨씬 크다. 그러나 이러한 바이오 제조로의 전환은 기술적, 경제적, 사회적 장벽으로 인해 어려움을 겪고 있다. 점점 더 많은 사람들이 지구 온난화의 현실과 그 악화되는 영향을 인식하면서 환경에 덜 해로운 제품에 대한 선호도가 높아지고 있지만, 실제 구매 결정에 있어서는 가격이 중요한 역할을 한다. 따라서, 각국 정부들은 규제 지원뿐만 아니라 대중과의 소통을 통해 지속 가능한 생산과 소비에 대한 이해와 헌신을 촉진해야 한다. 이 교수는 중요하게 떠오른 바이오 제조 확장, 특히 범용화학물질 생산 등 대체 불가능하지 않은 바이오기술 (not non-fungible)을 위해 풀어야 할 세 가지 주요 과제를 제시했다. 첫째, 미생물 세포 공장의 TRY(titer, rate, yield; 농도, 속도 및 수율)를 최대화하는 것으로 기존 대사공학에 데이터 과학, 인공지능 및 로봇 공학의 통합을 통해 이러한 역량을 강화해야 한다. 둘째, 원료 공급 및 물류의 최적화가 필요하다. 약 6억 톤의 바이오매스가 연간 바이오 기반 재료 생산을 위해 사용될 수 있지만, 최적의 분배 및 공급망이 완전히 구축되지 않았다. 다양한 원료의 사용을 가능하게 하는 기술 개발이 필요하다. 셋째, 인프라 및 시설 건설에 필요한 대규모 자본 투자 문제이다. 최근 들어 건설비용이 급격히 증가하여 최첨단 제조 시설을 구축하는 데 드는 높은 비용은 운영 확장의 재정적 실행 가능성을 어렵게 한다. 바이오 제조시설 구축을 위한 정책자금 투입 등 국가적인 인프라 개념에서의 투자가 요구되며, 단기적인 해결책으로는 완전히 유연한 중형 바이오 정제소를 건설하여 시장에 가장 적합한 제품을 생산할 수 있다고 제시했다. 이 교수는 “기술 혁신, 원료 공급 및 인프라 개발에의 집중적인 노력이 필요하다”고 강조하면서 “이를 통해 산업은 보다 지속 가능하고 경제적으로 실행 가능한 바이오 제조 공정으로 전환할 수 있으며, 이는 글로벌 시장에 큰 영향을 미칠 것이다. 지속 가능한 미래에 기여하고 산업에 상당한 경제적 기회를 제공할 것으로 기대된다.”고 밝혔다. 한편 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.07.25
조회수 2380
종양모델 칩으로 다조건 항암제 동시 평가
실제 인체에 항암제가 투여되면 약물 분자는 혈류를 따라 수송된다. 이 약물 분자들은 혈관 벽을 투과하고 확산한다. 확산한 분자는 종양 덩어리 내부까지 점차 침투해 약물 효능이 나타나게 된다. 우리 연구진이 바이오프린팅 기술로 36가지의 종양 미세환경을 유체채널 내부에 모사하여 12가지 실험 조건에 따른 항암제 효능을 동시에 평가하는데 성공하여 화제다. 우리 대학 바이오및뇌공학과 박제균 교수 연구팀이 기존 바이오프린팅* 및 랩온어칩** 기술의 한계점을 극복하고 장점을 극대화하여 복잡한 종양 미세환경이 구현된 랩온어칩을 개발하여 여러 분석 변수가 반영된 약물 스크리닝을 수행하는 데 성공했다고 16일 밝혔다. * 바이오프린팅(bioprinting): 세포와 생체재료로 구성된 바이오 잉크를 활용하여 생체조직 및 기관과 유사한 기능적 구조물을 제작하는 3D 프린팅 기술 ** 랩온어칩(lab-on-a-chip): “칩 위의 실험실”이란 개념을 갖고 있으며 각종 시료분석에 필요한 전처리, 분리, 희석, 혼합, 반응, 검출 기능 등을 미세유체 회로로 이루어진 채널 내에서 일괄적으로 수행할 수 있도록 만들어진 미세유체 소자 및 시스템 바이오프린팅은 조직이나 장기의 복잡한 형상과 조성을 체외환경에서 재현할 수 있는 생체모사 기술이지만, 제작된 생체모델의 배양 환경 제어와 분석이 어렵다. 반면, 랩온어칩은 미세 유체채널 내에서의 유체 제어 기술에 기반해 배양 환경의 정교한 제어와 다양한 분석 수행이 가능하지만, 미세한 유체 통로 내부에 생체 환경을 모사하는 데 한계가 있었다. 연구진은 바이오프린팅 기술로 서로 다른 조성으로 구성된 총 36개의 종양 모델을 랩온어칩 내에 형성한 후, 동일한 소자 내에서 12가지 실험 조건에 따른 항암제 효능을 동시에 평가하는 데 성공했다. 연구팀은 바이오프린팅의 우수한 공간적 자유도와 다양한 생체재료를 활용할 수 있다는 장점을 이용해, 세 가지 서로 다른 조성으로 이루어진 36개의 종양 모델을 하나의 미세 유체소자에 집적시켰다. 세포를 유동 배양해 물질 수송에 핵심 구조물인 혈관 벽과 종양 덩어리를 모사하여 네 가지 농도의 항암제를 종양 모델에 유입함으로써, 하나의 소자에서 12가지 실험 조건의 약물 평가를 수행했다. 또한 연구팀은 혈관 벽에 의해 약물 분자의 수송이 저해되고 종양 덩어리 내부까지 침투되는 현상을 관찰할 수 있었고, 체내 수송 과정을 모사하지 못했던 기존 종양 모델과 약물 효능에 큰 차이를 보인다는 것을 확인했다. 이처럼 바이오프린팅-랩온어칩 통합기술을 활용해 모델 복잡성, 모델 수, 모델 처리량 등 다양한 변수를 고려한 체외 종양 모델을 제작할 수 있었고, 더욱 신뢰성 있는 약물 평가를 수행할 수 있었다. 연구를 주도한 박제균 교수는 “바이오프린팅과 랩온어칩의 통합기술로 제작된 미세 유체 세포배양 및 분석 플랫폼의 개발에 따른 신뢰성 있는 약물 평가 모델에 대한 성과”임을 강조하며, “향후 다양한 조직 및 장기 특성을 모사하고 생물학적 분석과 약물 효능 평가를 고효율로 수행할 수 있는 동물실험 대체용 차세대 체외 세포배양 및 분석 기술로 활용될 수 있을 것”이라고 말했다. 바이오및뇌공학과 이기현 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 '어드밴스드 헬스케어 머티리얼즈(Advanced Healthcare Materials)'에 2024년 6월 3일 자로 온라인판에 게재됐다. (https://doi.org/10.1002/adhm.202303716. 논문명: Bioprinted multi-composition array mimicking tumor microenvironment to evaluate drug efficacy with multivariable analysis). 또한, 이번 논문은 와일리-VCH(Wiley-VCH) 출판사의 ‘핫 토픽: 종양과 암(Hot Topic: Tumors and Cancer)’세션과 ‘핫 토픽: 미세유체공학(Hot Topic: Microfluidics)’세션에 동시 선정됐다. 한편 이번 연구는 한국연구재단 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2024.07.16
조회수 2298
미생물로 계란을 만든다고?
우리 연구진이 미생물로 계란의 대체제를 개발하는 논문을 발표해서 화제다. 비동물성 원료를 활용한 계란 대체제 개발을 통해 온실가스 배출 및 폐기물 문제 등을 가져오는 공장식 축산의 문제를 해결하고 손쉽게 단백질 섭취가 가능한 지속가능한 식량 체계 구축에 기여할 수 있을 것으로 기대한다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘미생물 유래 친환경 액상 계란 대체물 개발’논문을 발표했다고 4일 밝혔다. 연구진은 미생물 용해물의 가열을 통해 형성된 젤이 삶은 계란과 유사한 미시적 구조와 물리적인 특성을 가지는 것을 확인하였고, 미생물 유래의 식용 효소나 식물성 재료를 첨가하여 다양한 식감을 구현할 수 있음을 밝혔다. 더 나아가, 액체 상태인 용해물을 이용하여 머랭 쿠키를 굽는 등, 미생물 용해물이 난액을 기능적으로 대체할 수 있음을 규명하였다. 현재까지 비동물성 단백질을 기반으로 한 계란 대체제 개발이 진행돼왔으나, 계란의 온전한 영양을 제공하는 동시에 젤화, 거품 형성 등 난액(卵液)이 요리 재료로서 지니는 중요한 핵심 기능적 특성을 함께 구현하는 대체제는 개발되지 못했다. 이러한 배경에서, 연구진은 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 미생물 바이오매스를 난액 대체제로 개발하고자 했다. 특히, 인류의 오랜 섭취 경험을 통해 효모, 고초균, 유산균 및 기타 프로바이오틱스 균주 등 다양한 미생물들의 안정성이 검증됐고, 미생물 바이오매스는 생산 시 발생하는 이산화탄소뿐만 아니라 물, 토지 등 요구되는 자원이 적으면서도 고품질의 영양성분을 가지고 있기에, 연구진은 미생물 바이오매스를 대체 난액으로 활용하는 기술을 개발할 수 있다면 지속 가능한 미래 식량자원의 확보에 기여할 수 있을 것으로 기대했다. 하지만 미생물 배양을 통해 회수한 반고체 상태의 미생물 바이오매스를 가열하면 난액과 달리 액상으로 변하는 것이 관찰됐다. 이에 연구진은 계란찜을 만들기 위해선 먼저 계란의 껍데기[난각(卵殼)]를 깨트리고 난액을 모아야 한다는 사실에 착안해 미생물의 세포 구조 중 난각에 상응하는 세포벽과 세포막을 파쇄해 미생물 용해물을 제조했고, 이를 가열할 경우 난액처럼 단백질이 응고돼 젤 형태로 변하는 것을 확인했다. 이상엽 특훈교수는 “영양 측면에서도 우수한 성분들을 갖추고 있어 평소 식량에도 사용될 수 있지만, 특히 미래 장거리 우주여행 식량, 전시 상황 등 긴급 상황 시의 대비를 위한 비상식량 등으로도 활용할 수 있으며, 무엇보다 지속 가능한 식량 체계 확보에 도움이 된다”고 말했다. 이번 논문은 네이처(Nature) 誌가 발행하는 'npj 식품 과학(npj Science of Food)'에 6월 19일자 온라인 게재됐다. ※ 논문명 : Microbial lysates repurposed as liquid egg substitutes ※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), 안다희(한국과학기술원, 제2 저자), 정석영(한국과학기술원, 제3 저자), 이유현(한국과학기술원, 제4 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 5명 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)와 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식 교수)의 ‘미생물 대사시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수) 및 의 지원을 받아 수행됐다.
2024.07.04
조회수 2896
KAIST 바이오 헬스케어 국제 심포지엄 개최
우리 대학은 사노피·노바티스 등 글로벌 제약회사가 참여하는 ‘KAIST 바이오 헬스케어 국제 심포지엄’을 13일 서울 코엑스에서 개최한다. 우리 대학 창업원(원장 배현민)이 바이오·헬스케어 창업 기업을 지원하기 위해 마련한 자리로 투자유치, 글로벌 사업협력, 네트워크 확장 등을 위한 기회를 제공한다.특히, 글로벌 빅파머의 기조연설과 머크사의 기업 주도형 벤처캐피탈(CVC)인 M벤처스에서 투자 관련 특별강연을 진행한다. 브라이언 브롱크(Brian Bronk) 사노피 글로벌 사업개발 책임자는 ‘환자에게 혁신을 제공하기 위한 사노피의 제품, 연구단계 프로젝트, 파트너십’을 주제로 연설한다. 이어, 도미닉 에리스만(Dominic Ehrismann) 노바티스 면역 부문 연구 책임자가 ‘글로벌 제약회사 노바티스의 신약 탐색 전략 및 프로세스’를 주제로 세계 시장의 신약 개발 동향을 공유한다. 올리버 하딕(Oliver Hardick) M벤처스 사내창업가는 ‘벤처캐피털이 지원하는 스타트업이 가치를 구축하고 극대화하기 위한 주요 조건’을 주제로 특별 강연한다. 해외연사들은 이어지는 패널 토론에도 참여해 바이오·헬스케어 스타트업의 글로벌 투자유치를 위한 전략과 기업가치 상승 방안을 논의할 예정이다.또한, ▴뉴로토브 ▴스파이더코어 ▴큐피크바이오 ▴㈜큐롬바이오사이언스 ▴위버케어 ▴파로노스바이오사이언스 ▴히츠 등 총 7개 바이오·헬스케어 스타트업이 기업설명회(IR Pitching)를 개최한다.이와 함께, 실질적인 투자 협의와 글로벌 사업 협력의 계기를 마련하기 위해 바이오·헬스케어 스타트업과 국내·외 투자자들의 1:1 미팅과 네트워킹 시간도 마련된다. 배현민 창업원장은 “KAIST의 스타트업들이 이번 심포지엄을 계기로 글로벌 제약 기업 및 투자사와 협력 방안을 모색하고 기업가치를 높일 수 있는 다양한 통찰을 얻게 되길 바란다“라고 밝혔다.우리 대학 창업원이 주관하고 충북창조경제혁신센터가 후원하는 이번 행사는 KDB산업은행이 주최하는 넥스트라이즈2024와 협력해 진행된다. 또한, 창업원 유튜브 채널에서 13일 오후 1시부터 실시간으로 시청할 수 있다.
2024.06.12
조회수 2035
이상엽 특훈교수, 합성생물학 개척자 상 수상
전 세계적으로 바이오 제조의 핵심기술인 합성생물학 분야 기술개발 경쟁이 치열하다. 우리 대학 생명화학공학과 이상엽 특훈교수가 합성생물학 분야 연구자, 기업인, 투자자 등이 대거 참여하는 세계 최대의 콘퍼런스인 ‘신바이오베타(SynBioBeta) 2024’에서 세계 합성생물학 개척자 상인 ‘신바이오베타 파이오니어 상(SynBioBeta Pioneer Award)’을 수상했다고 31일 밝혔다. 5월 6일부터 9일까지 미국 산호세 컨벤션센터에서 개최된 신바이오베타 2024는 순수한 학술대회와는 다르게 학계와 연구계 연구자들뿐 아니라 수많은 합성생물학 기업과 투자자들이 모여 기조 강연, 패널토론, 전시, 투자 네트워킹 등 다양한 형태의 방식으로 진행됐다. 인간 게놈서열을 처음으로 밝힌 크래그 벤터 박사, 바이오 투자계의 전설인 비노드 코슬라, 노벨상 수상자인 토마스 쉬도프 교수, 조인트 바이오에너지연구소의 제이 키슬링 CEO 등 600여 명의 참석자들이 활발한 토론을 했다. 이상엽 특훈교수는 ‘지속가능과 건강을 위한 합성생물학의 역할’을 주제로 기조 강연을 해 청중들의 큰 박수를 받았고, ‘생물학적 해결 용량 확장’세션에서 패널토론을 통해 세포공장 효율 극대화를 위한 기술적 혁신, 원료 수급의 최적화, 인프라 투자 등의 중요성을 강조했다. 신바이오베타는 전 세계 합성생물학 연구자 중 세 명의 개척자 상 후보자를 먼저 선정해 공개했고, 그중 이상엽 교수가 최종 수상자로 선정됐다. 콘퍼런스 마지막 날 이상엽 특훈교수는 합성생물학이 태동한 후 20여 년간 합성생물학 기반 바이오 제조 원천기술들과 석유 화학물질, 기능성 천연물질 등을 바이오 기반으로 만드는 다수의 기술들을 세계 최초로 개발하는 등 합성생물학 분야 연구를 개척한 공로로 세계 합성생물학 개척자 상을 받게 됐는데, 스탠퍼드 대학교 특강을 하는 중 발표되어 신바이오베타 2024에 참석 중이던 이 교수의 제자가 대리 수상했다. 상을 받게 된 이상엽 특훈교수는 “지난 30여 년간 제자들과 함께 연구해 온 시스템 대사공학이 바이오 제조분야에서 핵심 역할을 하게 될 것임을 합성생물학 전체 커뮤니티에서 인정받아 기쁘다”고 소감을 밝히며, “전 세계적으로 바이오 제조가 점점 더 중요해지는 시점에 인공지능, 바이오파운드리 활용 미생물 세포공장의 원천 및 응용 기술들을 지속 개발해 바이오산업 발전에 기여하고 싶다”고 향후 계획을 밝혔다.
2024.06.03
조회수 2204
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 21