본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%95%BC%EB%88%84%EC%8A%A4
최신순
조회순
빛의 방향에 따라 두 얼굴 야누스같은 메타표면 개발
메타표면 기술은 기존 기술에 비해 얇고 가벼우며, 나노미터 크기의 인공 구조물을 통해 빛을 정밀하게 제어할 수 있는 광학기술이다. 우리 연구진이 기존 메타표면 기술의 한계를 극복하고 빛의 비대칭 전송을 완벽하게 제어할 수 있는 야누스 메타표면 설계에 성공했다. 이 기술을 응용하여 특정 조건에서만 정보가 해독되어 보안성을 획기적으로 강화하는 방안도 제시했다. 우리 대학 신소재공학과 신종화 교수 연구팀이 빛의 비대칭 전송을 완벽하게 제어할 수 있는‘야누스 메타표면(Janus Metasurface)’을 개발했다고 15일 밝혔다. 방향에 따라 달리 반응하는 비대칭 성질은 과학과 공학의 다양한 분야에서 중요한 역할을 한다. 연구팀이 개발한 ‘야누스 메타표면'은 양방향에서 서로 다른 기능을 수행할 수 있는 광학 시스템을 구현한다. 마치 로마 신화의 두 얼굴을 가진 야누스처럼, 이 메타표면은 빛이 입사되는 방향에 따라 투과광이 전혀 다른 광학적 반응을 보이며, 하나의 장치로 두 개의 독립적인 광학 시스템(예: 한쪽 방향에서는 확대 렌즈, 다른 방향에서는 편광 카메라로 작동하는 하나의 메타표면)을 운영하는 것과 같은 효과를 발휘한다. 즉, 이 기술을 이용하면 빛의 방향에 따라 서로 다른 두 개의 광학계(e.g. 렌즈와 홀로그램)를 운영하는 효과를 얻을 수 있다. 이는 기존 메타표면 기술에서 해결되지 못한 난제였다. 기존 메타표면 기술은 빛의 세 가지 특성인 세기, 위상, 편광을 입사 방향에 따라 선택적으로 조절하는 데 한계가 있었다. 연구팀은 수학적, 물리적 원리를 바탕으로 이러한 문제를 해결할 방법을 제시했고, 특히 양방향에서 서로 다른 벡터 홀로그램을 실험적으로 구현하는 데 성공했다. 이를 통해 완전한 비대칭 투과 광 제어 기술을 선보였다. 연구팀은 또한 이번 메타표면 기술을 기반으로 새로운 광학 암호화 기술을 개발했다. 야누스 메타표면을 통해 입사 방향과 편광 상태에 따라 서로 다른 이미지를 생성하는 벡터 홀로그램을 구현해, 특정 조건에서만 정보가 해독되는 보안성을 획기적으로 강화한 광학 암호화 시스템을 선보였다. 이 기술은 차세대 보안 솔루션으로서, 양자 통신, 보안 데이터 전송 등 다양한 분야에서 활용될 것으로 기대된다. 특히, 메타표면의 초박형 구조는 기존 광학 소자의 부피와 무게를 획기적으로 줄일 수 있어, 차세대 디바이스의 소형화 및 경량화에 크게 기여할 것으로 보인다. 신소재공학과 신종화 교수는 "이번 연구를 통해 광학 분야의 오랜 난제였던 빛의 세기, 위상, 편광의 완전한 비대칭 투과 제어가 가능하게 됐고, 이를 바탕으로 다양한 응용 광학 소자의 개발 가능성이 열렸다”며, "메타표면 기술의 잠재력을 최대한 활용해 기존 한계를 뛰어넘는 고도화된 광학 암호화 외에도 증강현실(AR), 홀로그램 디스플레이, 그리고 자율주행 차의 LiDAR(라이다) 시스템 등 다양한 분야에 응용되도록 광학 소자들을 지속적으로 개발할 계획”이라고 말했다. 신소재공학과 김현희 박사과정생과 정준교 박사가 공동 제 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’에 온라인 공개되었으며 10월 31일 자로 발행될 예정이다. (논문명: Bidirectional Vectorial Holography Using Bi-Layer Metasurfaces and Its Application to Optical Encryption) 한편 이번 연구는 한국연구재단 나노소재기술개발사업, 중견연구자지원사업의 지원을 받아 수행됐다.
2024.10.15
조회수 3310
양승만 교수, 천연색 화소용 야누스입자 제조
- 차세대 표시소자의 핵심소재 - 네이처誌와 어드밴스드 머티리얼스誌 최근호에 게재 광자결정 기반 광자유체 신기술들을 개발하여 세계 최고 권위의 학술지인 네이처 포토닉스(Nature Photonics)誌 등에 관련 논문을 게재했던 국내 연구진이 최근 또 다른 광자결정 신기술을 개발했다. KAIST 생명화학공학과 양승만(梁承萬, 58세, 광자유체집적소자 창의연구단 단장) 교수 연구팀이 지난 8월 ‘굴절률 조절이 가능한 미세입자 대량생산기술‘과 ’광자유체 기술을 이용한 광결정구 연속생산 기술‘을 개발한데 이어, 이번에는 "전자종이(e-paper)"나 "접을 수 있는 디스플레이(flexible display)"를 구현하는데 필요한 핵심소재인 천연색 화소를 실용적으로 제조할 수 있는 광자결정구조체를 개발했다. 관련 논문은 국제적 저명 학술지인 어드밴스드 머티리얼스(Advanced Materials)誌 최근호(11월 3일자)에 게재됐으며, 광자결정의 실용성을 구현하는데 크게 기여했다고 인정받았다. 특히, 네이처(Nature)誌 최근호(11월 6일자)는 梁 교수 연구팀 연구의 중요성과 응용성에 주목하여 “나노기술 - 차세대 표시소자 (Nanotechnology-Future Pixels)”라는 제목 하에 리서치 하이라이트(Research Highlights)로 선정했다. 梁 교수 연구팀은 균일한 크기와 모양을 갖는 광자결정구를 생산하는데 있어 크기가 수십 혹은 수백 마이크로미터인 균일한 액체방울에 나노입자를 가두고, 빛을 매개로 액체를 고형화 시킴으로써 종래에 수십 시간 소요되던 광자결정 자기조립공정을 연속적으로 불과 수십 초 만에 제조할 수 있는 기술을 이번 연구에서 확보했다. 이들 광자결정구는 차세대 반사형디스플레이 색소나, 나노바코드, 생물감지소자 등으로 활용될 수 있다. 특히 주목할 것은 몇 개의 다른 색을 반사하는 야누스 광자결정구슬을 제조했다는 것과, 전기장을 이용하여 이들 야누스 구슬을 회전시켜 실시간으로 색깔을 바꿀 수 있도록 광자결정 내부에 전기적 이방성을 갖도록 했다는 점이다. 전기장으로 야누스 구슬을 구동시켜 색 조절을 가능케 한 이번 기술은 앞으로 ‘전자종이"나 "접을 수 있는 디스플레이" 소자에 활용될 수 있다. 이러한 광자결정 표시소재는 현재 세계굴지의 화학회사들이 연구개발 중이며 이번 연구 결과는 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 지난 20여 년 동안 자연 상태에 존재하는 광자결정의 나노구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의해 시도돼 왔으나, 실용적인 구조를 얻는 데에는 한계가 있었다. 梁 교수팀은 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’으로부터 지원을 받아 광자결정소재의 실용성을 확보하기 위한 연구를 수행하여 최근 해외 저명학술지로부터 크게 주목 받는 연구 성과를 거뒀다. <용어설명> 광자결정 : 광자결정은 굴절률이 다른 물질이 규칙적으로 쌓여서 조립된 결정체로서 오팔보석, 나비와 공작새의 날개 등이 자연에 존재하는 광자결정이다. 이들이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질을 이루는 구조가 규칙적인 나노구조로 되어 있기 때문이다. 예를 들면, 오팔은 크기가 수백 나노미터(머리카락 굵기의 약 100 분의 1정도)의 유리구슬이 차곡차곡 쌓여 있는 것으로서 오팔이 아름다운 색을 띄는 것은 오팔이 자신의 광 밴드 갭, 즉 오팔이 선택적으로 반사하는 파장영역대의 빛만을 우리가 볼 수 있기 때문이다. 마찬가지로 나비의 날개나 공작새의 깃털을 전자현미경을 통하여 보면 아주 작은 공기주머니가 날개나 깃털의 기질 속에 규칙적으로 적층되어 있는 광자결정구조를 보유하고 있음을 알 수 있다. 즉, 이러한 구조의 광자결정은 특정한 파장 영역대의 빛만을 완전히 선택적으로 반사시키는 기능을 보유하게 된다. 이러한 특수한 기능으로 인하여 광자결정은 나노레이저, 다중파장의 광정보를 처리할 수 있는 슈퍼프리즘(superprism), 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발에 필요한 소재로 주목 받고 있다. 이러한 이유로 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다.
2008.11.12
조회수 20022
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1