세포·약물 반응‘레고블록’처럼 조립·예측하는 AI 기술 개발
세포의 상태를 원하는 방향으로 조절하는 것은 신약 개발, 암 치료, 재생 의학 등 생명과학 분야의 핵심 과제지만, 적합한 약물이나 유전자 표적을 찾는 일은 쉽지 않다. 이에 우리 대학 연구진은 세포와 약물 반응을 레고블록처럼 분해하고 다시 조립하는 방식으로 수학적으로 모델링해, 실제로 실험하지 않은 세포와 약물의 새로운 반응은 물론 임의의 유전자 조절 효과까지 예측할 수 있는 새로운 AI 기술을 개발했다.
우리 대학은 바이오및뇌공학과 조광현 교수 연구팀이 생성형 AI를 활용해 세포를 목표 상태로 유도할 수 있는 약물과 유전자 표적을 찾아내는 새로운 인공지능 기술을 개발했다고 16일 밝혔다.
‘잠재공간(latent space)’은 이미지 생성 AI가 사물이나 세포의 특징을 수학적으로 정리해 놓은 보이지 않는 ‘지도’와 같은 공간이다. 연구팀은 이 공간에서 세포의 상태와 약물의 효과를 각각 분리해내고, 이를 다시 조합해 실험하지 않은 세포-약물 조합의 반응을 예측하는 방식을 고안했다. 이 원리를 확장해, 특정 유전자를 조절했을 때 어떤 변화가 나타나는지도 예측할 수 있음을 보였다.
연구팀은 실제 데이터를 활용해 이 기술을 검증했다. 그 결과 대장암 세포를 정상 세포에 가까운 상태로 되돌릴 수 있는 분자 표적을 AI가 찾아냈고, 이를 세포 실험으로 입증했다.
이는 이번 성과가 암 치료에만 국한되는 것이 아니라, 학습되지 않은 다양한 세포 상태 전환과 약물 반응을 예측할 수 있는 범용 플랫폼임을 보여주는 사례다. 즉, 단순히 ‘이 약이 효과가 있다’ 수준이 아니라 그 약이 세포 안에서 어떻게 작용하는지 원리까지 밝힐 수 있었다는 점에서 의미가 크다.
이번 연구는 세포를 원하는 상태로 바꿀 수 있는 방법을 설계하는 데 큰 도움이 되는 도구다. 앞으로 신약 개발이나 암 치료뿐만 아니라, 손상된 세포를 다시 건강한 세포처럼 되살리는 연구 등 여러 의학 분야에 널리 활용될 수 있을 것으로 기대된다.
조광현 교수는 “이미지 생성 AI 기술에서 착안해 세포도 원하는 방향으로 바꿀 수 있다는 아이디어인 ‘방향 벡터’ 개념을 적용했다”며, “이번 기술은 특정 약물이나 유전자가 세포에 미치는 효과를 정량적으로 분석하고, 아직 알려지지 않은 반응까지 예측할 수 있는 범용 AI 방식이라는 점에서 의미가 크다”고 말했다.
이번 연구에는 KAIST 한영현 박사, 김현진 박사과정, 이춘경 박사가 참여했으며, 연구 결과는 셀(Cell) 출판사가 출간하는 국제 학술지 `셀 시스템(Cell Systems)'에 10월 15일 字 논문으로 출판됐다.
※ 논문명: Identifying an optimal perturbation to induce a desired cell state by generative deep learning (DOI: 10.1016/j.cels.2025.101405)
한편, 이번 연구는 과학기술정보통신부 한국연구재단의 중견연구사업과 기초연구실 사업 등의 지원을 통해 수행됐다.
치매 등 비밀 밝힐 뇌 면역 유전자 규명
사람마다 가지고 있는 유전자 차이가 어릴 때 뇌가 자라나는 과정에서는 크게 문제가 되지 않지만, 나이가 들어서 치매 등 뇌 질환이 생길 때는 왜 어떤 사람이 더 잘 걸리는지 오랫동안 수수께끼였다. 국내 연구진이 최근 뇌 속 별아교세포가 면역 반응을 켜고 끄는 스위치를 지니고 있으며, 이 스위치를 조절하는 핵심유전자를 알아내고 성인이 된 후 뇌 질환에 대한 개인의 취약성을 결정한다는 점을 세계 최초로 밝혀냈다. 향후 알츠하이머병의 퇴행성뇌질환을 포함한 다양한 뇌 면역 반응의 원인 규명과 치료 전략의 중요한 단서를 제공했다.
우리 대학은 생명과학과 정인경 교수와 기초과학연구원(원장 노도영, IBS) 혈관 연구단 정원석 부연구단장(겸 KAIST 생명과학과 교수) 공동연구팀이 별아교세포(astrocyte) 발달 과정에서 특정 유전자가 성인기 뇌 면역 반응 조절에 핵심 역할을 한다는 사실을 세계 최초로 규명했다고 24일 밝혔다.
연구팀은 쥐 모델을 활용해 뇌·척수에 차지하는 비중이 높은 별아교세포의 발달 시기별 유전자 조절 프로그램을 정밀 분석한 결과, ‘NR3C1(Glucocorticoid Receptor)’ 유전자가 출생 직후 발달 단계에서 장기적 면역 반응 억제의 핵심 조절자임을 밝혀냈다.
연구팀은 최신 ‘3차원 후성유전체 분석 기술(DNA에 유전정보를 커짐·꺼짐분석 기술)’을 적용해 별아교세포 발달 과정에서의 전사체, 염색질 접근성, ‘3차원 게놈 상호작용(DNA가 공간 속에서 어떻게 접히고 서로 만나는지를 보는 기술)’을 통합 분석했다.
그 결과, 별아교세포가 자라나는 과정에서 55개의 중요한 유전자 조절 단백질(전사인자)을 찾아냈다. 그중에서도 NR3C1이라는 유전자가 아기 뇌가 처음 발달할 때 “가장 중요한 스위치” 역할을 한다는 사실을 밝혔다. 흥미로운 점은, 이 유전자가 없다고 해서 어릴 때 뇌 발달이 크게 망가지지는 않았다.
하지만 성인이 된 뒤 뇌에 자가면역성 질환(몸의 면역체계가 자기 뇌를 공격하는 병)을 일으키면, NR3C1이 없는 경우 뇌가 과도하게 염증 반응을 일으키고 병이 훨씬 심해졌다.
즉, NR3C1은 아기 뇌에서 “면역 스위치를 미리 켜둘 준비를 하는 엔진 예열 버튼”인 ‘후성유전적 프라이밍* 제어 역할을 하며, 이 덕분에 성인이 된 뒤 뇌가 과도한 면역 반응을 일으키지 않도록 지켜준다는 것을 알아냈다.
*후성유전적 프라이밍(epigenetic priming)유전자가 당장 발현되지 않더라도, 필요할 때 즉시 켜질 수 있게 스위치를 미리 준비해 두는 과정
정원석 IBS 부연구단장(KAIST 생명과학과 교수)은 “별아교세포의 면역 기능이 후성유전적 기억에 의해 조절된다는 사실을 처음 규명했다”며, “향후 알츠하이머병 등 퇴행성 뇌 질환의 원인 규명에 기여할 것”이라고 말했다.
KAIST 생명과학과 정인경 교수는 “이번 연구는 별아교세포 발달의 특정 시기(시간적 조절 창, window of susceptibility)가 성인기와 노인기 뇌 질환의 취약성을 좌우할 수 있음을 보여줬다”며, “게놈 3차원 구조 기반 연구가 다발성경화증(MS) 등 면역성 뇌 질환의 새로운 발병 원리 이해와 치료 전략 개발로 이어질 것”이라고 밝혔다.
이번 연구 결과는 KAIST 생명과학과 박성완 박사와 박현지 박사과정 학생이 제 1저자로 국제 학술지 네이처 커뮤니케이션스(Nature Communications, IF 15.7) 9월 22일자 온라인판에 게재됐다.
※논문명: NR3C1-mediated epigenetic regulation suppresses astrocytic immune responses in mice, DOI: https://www.nature.com/articles/s41467-025-64088-5
또한 저널은 9월 17일, 해당 연구를 소개한 해설 글을 게재했다. https://www.nature.com/articles/s41467-025-64102-w
한편 이번 연구는 서경배과학재단, 보건복지부, 과학기술정보통신부, IBS의 지원을 받아 수행됐다.
유전자 가위로 유전자 켜고 끄기 동시에 가능하다
유전자를 켜고 끈다는 것은 마치 전등 스위치를 올리고 내리듯, 세포 속 유전자의 작동 여부를 조절하여 켜면 단백질이나 물질 생산이 활발해지고, 끄면 생산이 억제된다. 한국 연구진이 기존에 ‘끄는 기능’에 치중됐던 한계를 넘어, 유전자를 켜고 끄는 것을 동시에 구현할 수 있는 혁신적 시스템을 세계 최초로 개발하며 합성생물학 기반 바이오산업의 새로운 패러다임을 열었다.
우리 대학 공학생물학대학원(생명과학과 겸임) 이주영 교수와 국가과학기술연구회(이사장 김영식) 산하 한국화학연구원(원장 이영국) 노명현 박사 공동연구팀이 대장균에서 원하는 유전자를 동시에 켜고 끄는 것이 가능한 새로운 이중모드 크리스퍼(CRISPR) 유전자 가위 시스템을 개발했다고 21일 밝혔다.
대장균은 실험이 쉽고 산업적 활용으로 바로 이어질 수 있는 대표적인 미생물이다. 한편, 유전자 가위(CRISPR) 기술은 21세기 생명공학의 가장 혁신적인 도구로 평가받고 있다.
특히 합성생물학의 기반이 되는 박테리아는 구조가 단순하고 빠르게 증식하면서도 다양한 유용 물질을 생산할 수 있다. 따라서 박테리아에서의 유전자 활성화는 ‘미생물 공장’을 설계하는 핵심 기술로, 산업적 가치가 매우 크다.
합성생물학의 핵심은 생명체의 유전자 회로를 프로그래밍하듯 설계해 원하는 기능을 수행하도록 만드는 것이다. 마치 전자회로에서 스위치를 켜고 끄듯, 특정 유전자는 활성화하고 다른 유전자는 억제해 대사경로를 최적화하는 기술이 필요하다. 연구팀이 개발한 이중모드 유전자 가위는 바로 이러한 정밀한 유전자 조절을 가능하게 하는 핵심 도구다.
기존 유전자 가위(CRISPR)는 주로 ‘끄기(억제)’ 기능에 특화되어 유전자 발현을 막는 데는 뛰어났지만, 반대로 유전자를 켜는 기능은 매우 제한적이었다.
또한 CRISPR가 작동하려면 특정 DNA 인식 서열(PAM, protospacer adjacent motif)이 필요한데, 기존 시스템은 PAM 인식 범위가 좁아 조절할 수 있는 유전자의 폭이 제한적이었다.
게다가 진핵세포(사람·식물·동물 세포)에서는 CRISPR 기반 활성화(CRISPRa)가 어느 정도 발전했지만, 박테리아에서는 내부 전사조절 메커니즘 차이로 유전자 ‘켜기’가 제대로 되지 않는 한계가 있었다.
연구팀은 이 한계를 극복하고자 표적을 확장하여 더 많은 유전자에 접근 가능하도록 하고 대장균 단백질을 활용하여 유전자 활성화 성능을 대폭 향상하였다.
그 결과, 기존에는 “끄는 것 위주”였던 유전자 가위가, 이번에는 켜기와 끄기를 동시에 제어할 수 있는 시스템으로 발전하게 된 것이다.
개발된 시스템의 성능 검증 결과는 매우 인상적이었다. 유전자를 켜는 실험에서는 최대 4.9배까지 발현량이 증가했고, 끄는 실험에서는 83%까지 억제할 수 있었다.
더욱 놀라운 것은 두 개의 서로 다른 유전자를 동시에 조절할 수 있다는 점이었다. 실제로 한 유전자는 8.6배 활성화하면서 동시에 다른 유전자는 90% 억제하는 데 성공했다.
연구팀은 이 기술의 실용성을 입증하기 위해 항암효과가 있는 보라색 색소인 ‘바이올라세인’ 생산량 늘리기에 도전했다. 대장균의 모든 유전자를 대상으로 하는 대규모 실험을 통해 바이올라세인 생산에 도움이 되는 유전자들을 찾아냈다.
그 결과, 단백질 생산을 도와주는 ‘rluC’ 유전자를 켜면 2.9배, 세포를 분열하고 나누어지도록 하는 ‘ftsA’ 유전자를 끄면 3.0배 생산량이 늘어났다. 두 유전자를 동시에 조절했을 때는 더욱 큰 시너지 효과가 나타나 무려 3.7배의 생산량 증가를 달성했다.
한국화학연구원 노명현 박사는 “박테리아에서도 정밀한 유전자 활성화가 가능해졌다”며 “합성생물학 기반 바이오산업 발전에 크게 기여할 것”이라고 말했다.
이주영 교수는 “이번 연구는 유전자 가위와 합성생물학을 결합해 미생물 생산 플랫폼의 효율을 크게 높인 성과”라며 “하나의 시스템으로 복잡한 유전자 네트워크를 제어할 수 있어 새로운 연구 패러다임을 제시했다”고 밝혔다. 또한 “이번 기술은 다른 박테리아 종에서도 작동이 확인돼, 바이오 의약품·화학물질·연료 생산 등 다양한 분야에 활용될 수 있다”고 덧붙였다.
우리 대학 생명과학연구소 문수영 박사후 연구원이 제1 저자인 이번 연구 결과는 분자생물학 분야 최고 권위지인 ‘Nucleic Acids Research'에 지난 8월 21일 온라인 게재됐다.
※ 논문명: Dual-mode CRISPRa/i for genome-scale metabolic rewiring in Escherichia coli
(저자 정보 : 문수영(KAIST, 제1 저자), 김미리(한국화학연구원), 안난영(KAIST), 노명현(한국화학연구원, 교신저자), 이주영(KAIST, 교신저자) 총 5명)
※DOI: 10.1093/nar/gkaf818
한편, 이번 연구는 과학기술정보통신부 한국연구재단과 보스턴코리아 공동연구개발 사업의 지원으로 수행됐다.
유전자 교정으로 기후·식량 해법 모색...김진수 교수 34억 원 주식 기부
우리 대학은 공학생물대학원 김진수 교수가 기후 재난과 농업 위기 극복을 위해 ㈜툴젠 주식 8만 5천주를 기부했다고 16일 밝혔다. 해당 주식은 9월 15일 기준 약 34억 3천8백만 원 상당으로, KAIST는 이를 활용해 농업·생명과학 분야의 혁신적 연구를 적극 추진할 계획이다.
이번 기부금은 올해 하반기 설립 예정인 ‘식물기반 탄소포집연구센터(Center for Plant-based Carbon Capture)’에 사용되며, KAIST는 이를 기반으로 기후 변화 대응과 글로벌 식량 안보 문제 해결을 위한 연구를 본격화해, 지속 가능한 미래 사회 구현에 기여할 방침이다.
연구소는 식물과 미세조류(algae)의 광합성 효율을 극대화하는 기술 개발에 집중한다. 이를 통해 대기 중 이산화탄소 흡수율을 높여 탄소중립 실현에 기여하고, 동시에 식량 생산성을 획기적으로 향상시켜 식량 안보에 기여하는 것이 목표다.
핵심 기술은 김진수 교수가 세계 최초로 개발한 ‘세포소기관(엽록체·미토콘드리아) DNA 직접 교정 기술’이다. 햇빛을 받아 광합성을 담당하는 엽록체와 세포의 에너지 발전소 역할을 하는 미토콘드리아는 자체 DNA를 갖고 있는데, 기존 크리스퍼(CRISPR) 기술로는 교정이 불가능했다. 이번 기술은 이 DNA까지 정밀 교정할 수 있어 향후 난치성 유전질환 연구와 치료에도 활용될 수 있다.
또한 이 기술로 개발한 작물은 원래 식물에 있는 DNA를 직접 교정하는 방식이라 외부 유전자를 삽입하지 않기 때문에 GMO(유전자변형생물체)가 아니라, 미국, 일본 등에서 ‘비유전자변형생물체(Non-GMO)’로 인정받는다. 이는 규제 장벽이 낮고 소비자 수용성을 높여, 기술 상용화와 시장 진출 가능성을 크게 확대한다.
우리 대학은 이번 연구소 설립을 통해 기후 변화 속 식량 위기 극복, 농업 생산성의 획기적 향상, 지속 가능한 탄소 저감 방안 제시, 차세대 바이오에너지 산업 창출 등 다양한 성과를 기대하고 있다.
김 교수의 핵심 기술을 적용하면, 이산화탄소를 많이 흡수하고 에너지원으로 활용할 수 있는 고효율 작물을 대량 생산할 수 있다. 이 작물은 친환경 항공 연료인 지속가능항공유(SAF)의 원료로 쓰일 수 있어, 한국이 미래 항공 연료 강국으로 도약하는 데 중요한 발판이 될 전망이다.
김 교수는 “인류가 직면한 기후 변화와 식량 안보 위기는 더 이상 외면할 수 없는 시대적 과제”라며 “유전자 교정 과학기술의 발전과 인력 양성은 물론 산학연 협력을 바탕으로 지속가능한 미래를 만드는데 기여할 수 있기를 바라는 마음으로 기부를 결심했다”고 밝혔다
이광형 KAIST 총장은 “김진수 교수님의 기부는 과학자의 헌신과 사회적 책임을 보여주는 귀감”이라며, “KAIST는 식물기반 탄소포집연구센터를 통해 혁신 기술을 선도하고 글로벌 기후·식량 위기 해결에 앞장서겠다”고 강조했다.
복잡한 변형 유전자 네트워크 제어해 정상 회복 성공
기존에는 세포의 한 가지 자극-반응에 따라 유전자 네트워크를 조절하는 방식의 제어 연구가 이루어졌으나, 최근에는 복잡한 유전자 네트워크를 정밀 분석해 제어 타겟을 찾는 연구가 제안되고 있다. 우리 연구진이 세포의 변형된 유전자 네트워크에 적용해 유전자 제어 타겟을 찾아 회복시키는 범용 기술 개발에 성공했다. 이번 연구 성과는 암 가역화와 같은 새로운 항암치료법 및 신약 개발, 정밀의료, 세포치료를 위한 리프로그래밍 등 폭넓게 활용될 것으로 기대된다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대수적 접근법을 활용해 변형된 세포의 자극-반응 양상을 정상으로 회복시킬 수 있는 유전자 제어 타겟을 체계적으로 발굴하는 기술을 개발했다고 28일 밝혔다. 대수적 접근법은 유전자 네트워크를 수학 방정식으로 표현한 뒤 대수 계산을 통해 제어 타겟을 찾아내는 방식이다.
연구팀은 세포 속 유전자들이 서로 얽혀 조절하는 복잡한 관계를 하나의 ‘논리 회로도(불리언 네트워크, Boolean network)’로 표현했다. 이를 바탕으로 세포가 외부 자극에 어떻게 반응하는지를 ‘지형 지도(표현형 지형, phenotype landscape)’로 시각화했다.
그리고 ‘세미 텐서 곱(semi-tensor product)*’이라는 수학적 기법을 활용해 이 지도를 분석한 결과, 어떤 유전자를 조절하면 세포 전체 반응이 어떻게 달라질지 빠르고 정확하게 계산할 수 있는 방법을 만들어 낸 것이다.
*세미텐서곱: 모든 가능한 유전자 조합과 제어 효과를 하나의 대수적 공식으로 계산함
하지만 실제 세포의 반응을 결정하는 주요 유전자들은 수천 개 이상이어서 계산이 매우 복잡하다. 이를 해결하기 위해 연구팀은 ‘수치학적 근사(테일러 근사)’ 기법을 적용해 계산을 단순화했다. 쉽게 말해, 복잡한 문제를 풀기 쉽게 간단한 공식으로 바꾸어도 결과는 거의 똑같이 나오도록 만든 것이다.
이를 통해 연구팀은 세포가 어떤 안정 상태(=끌개, attractor)에 도달하는지를 계산하고, 특정 유전자를 제어했을 때 세포가 어떤 새로운 상태로 바뀌는지를 예측할 수 있게 됐다. 그 결과, 비정상적인 세포 반응을 정상 상태와 가장 유사한 상태로 되돌릴 수 있는 핵심 유전자 제어 타겟을 찾아낼 수 있었다.
조광현 교수팀은 개발한 제어 기술을 다양한 유전자 네트워크에 적용해 실제로 세포의 변형된 자극-반응 양상을 정상으로 회복시킬 수 있는 유전자 제어 타겟을 높은 정확도로 예측할 수 있음을 검증했다.
특히 방광암 세포 네트워크에 적용해, 변형된 반응을 정상으로 회복시킬 수 있는 유전자 제어 타겟들을 찾아냈으며, 또한 면역세포 분화 시 대규모 왜곡된 유전자 네트워크에서도 정상적인 자극-반응 양상을 회복시킬 수 있는 유전자 제어 타겟들을 찾아냈다. 이를 통해 기존에는 매우 오랜 시간의 컴퓨터 시뮬레이션만으로 근사적인 탐색만 가능했던 문제를 빠르고 체계적으로 해결할 수 있게 되었다.
조광현 교수는 “이번 연구는 세포 운명을 결정짓는 유전자 네트워크의 표현형 지형을 분석·제어하는 디지털 셀 트윈(Digital Cell Twin) 모델* 개발의 핵심 원천기술로 평가된다”며 “향후 암 가역화를 통한 새로운 항암치료법, 신약 개발, 정밀의료, 세포치료를 위한 리프로그래밍 등 생명과학·의학 전반에 폭넓게 응용될 수 있을 것으로 기대된다”고 말했다.
*디지털 셀 트윈 모델: 세포 내부에서 실제로 일어나는 복잡한 반응 과정을 디지털 모델로 옮겨와, 실제 실험 대신 가상으로 세포 반응을 시뮬레이션하는 기술
우리 대학 정인수 석사, 코빈 하퍼 박사과정 학생, 장성훈 박사과정 학생, 여현수 박사과정 학생이 참여한 이번 연구 결과는 미국 과학진흥협회(AAAS)에서 출간하는 국제저널 `사이언스 어드밴시스(Science Advances)' 8월 22일 字 온라인판 논문으로 출판됐다.
※ 논문명: Reverse Control of Biological Networks to Restore Phenotype Landscapes
※ DOI: https://www.science.org/doi/10.1126/sciadv.adw3995
한편 이번 연구는 과학기술정보통신부 한국연구재단의 중견연구사업과 기초연구실 사업 등의 지원을 통해 수행됐다.
세계 최초 유전자 가위로 원하는 RNA ‘콕’ 집어 변형 성공
RNA 유전자 가위는 코로나바이러스와 같은 바이러스의 RNA를 제거하여 감염을 억제하거나 질병 원인 유전자 발현을 조절할 수 있어, 부작용이 적은 차세대 유전자 치료제로 크게 주목받고 있다. 우리 연구진은 세포 내 존재하는 수많은 RNA(유전 정보를 전달하고 단백질을 만드는 데 중요한 역할을 하는 분자) 중에서 원하는 RNA만을 정확하게 찾아서 아세틸화(화학 변형)할 수 있는 기술을 세계 최초로 개발했고, 이는 RNA 기반 치료의 새 장을 열 수 있는 핵심 기술이 될 것으로 기대된다.
우리 대학 생명과학과 허원도 석좌교수 연구팀이 최근 유전자 조절 및 RNA 기반 기술 분야에서 각광받는 RNA 유전자 가위 시스템(CRISPR-Cas13)을 이용해 우리 몸 안의 특정한 RNA에 아세틸화를 가할 수 있는 혁신적 기술을 개발했다고 10일 밝혔다.
RNA는 ‘화학 변형(chemical modification)’이란 과정을 통해 그 특성과 기능이 변화할 수 있다. 화학 변형이란 RNA 염기 서열 자체의 변함없이 특정 화학 그룹이 추가됨으로써 RNA의 성질과 역할을 변화시키는 유전자 조절 과정이다. 그중 하나가 시티딘 아세틸화(N4-acetylcytidine)라는 화학 변형인데, 지금까지는 이 화학 변형이 세포 내에서 어떤 기능을 수행하는지 정확히 알려져 있지 않았다. 특히, 인간 세포의 mRNA(단백질을 만드는 RNA)에 이 변형이 실제로 있는지, 어떤 역할을 하는지 등에 대한 논란이 이어졌다.
연구팀은 이러한 한계를 극복하기 위해 원하는 RNA만을 정밀하게 표적하는 유전자 가위인 Cas13에 RNA를 아세틸화시키는 NAT10의 고활성 변이체(eNAT10)를 결합한 ‘표적 RNA 아세틸화 시스템(dCas13-eNAT10)’을 개발했다. 즉, 원하는 RNA만 정확하게 골라서 아세틸화시키는 ‘표적 RNA 변형 기술’을 만든 것이다.
연구팀은 표적 RNA 아세틸화 시스템과 세포 내 특정 RNA를 찾아 안내하는 가이드 RNA에 의해 원하는 RNA에 아세틸화 화학 변형을 가할 수 있음을 증명했다. 이를 통해 아세틸화 화학 변형된 메신저 RNA (mRNA)에서 단백질 생산이 증가한다는 사실을 확인했다.
또한, 연구팀은 개발한 시스템을 이용해 RNA 아세틸화가 RNA를 세포핵에서 세포질로 이동시킨다는 사실을 최초로 밝혀냈다. 이번 연구는 아세틸화 화학 변형이 세포 내 RNA ‘위치 이동’도 조절할 수 있다는 가능성을 보여주는 결과다.
연구팀은 개발한 기술이 AAV(아데노-관련 바이러스)라는 유전자 치료에 널리 이용되는 운반체 바이러스를 통해 실험 쥐의 간에 전달하여 동물의 몸속에서도 정확히 RNA 아세틸화 조절이 가능할 수 있음을 입증했다. 이는 RNA를 화학 변형하는 기술이 생체 내 적용에 확장될 수 있음을 보여주는 최초의 사례다. 이는 RNA 기반 유전자 치료 기술로의 응용 가능성을 여는 성과로 평가받는다.
RNA 유전자가위를 활용한 코로나 치료기술과 빛으로 RNA 유전자가위 활성화 기술을 개발하였던 허원도 교수는 “기존 RNA 화학 변형 연구는 특정성, 시간성, 공간성 조절이 어려웠지만, 이번 기술은 원하는 RNA에 선택적으로 아세틸화를 가할 수 있어 RNA 아세틸화의 기능을 정확하고 세밀하게 연구할 수 있는 길을 열였다”며, “이번에 개발한 RNA 화학 변형 기술은 향후 RNA 기반 치료제 및 생체 내 RNA 작동을 조절하는 도구로 폭넓게 활용될 수 있을 것”이라고 전했다.
우리 대학 생명과학과 유지환 박사과정이 제1 저자로 수행한 이 연구는 국제 학술지 ‘네이처 케미컬 바이올로지 (Nature Chemical Biology)’에 2025년 6월 2일 자로 게재됐다.
(논문명: Programmable RNA acetylation with CRISPR-Cas13, Impact factor: 12.9, DOI: https://doi.org/10.1038/s41589-025-01922-3)
한편, 이번 연구는 삼성미래기술육성재단과 한국연구재단 바이오·의료기술개발사업의 지원을 받아 수행됐다.
슈퍼박테리아 방패 ‘바이오필름’ 무력화 치료 플랫폼 개발
병원 내 감염의 주요 원인 중 하나로 알려진 슈퍼박테리아 ‘메티실린 내성 황색포도상구균(MRSA, 이하 포도상구균)’은 기존 항생제에 대한 높은 내성뿐 아니라 강력한 미생물막인 바이오필름(biofilm)을 형성함으로써 외부 치료제를 효과적으로 차단한다. 이에 우리 연구진은 국제 연구진과 함께 미세방울(microbubble)을 이용해 유전자 표적 나노입자를 전달하여 바이오필름을 무너뜨리고 기존 항생제가 무력한 감염증에 대한 혁신적 해결책을 제시하는 플랫폼 개발에 성공했다.
우리 대학 생명과학과 정현정 교수 연구팀이 미국 일리노이대 공현준 교수팀과의 공동연구를 통해, 포도상구균이 형성한 세균성 바이오필름을 효과적으로 제거하기 위해 유전자 억제제를 세균 내부로 정확하게 전달하는 미세방울 기반 나노-유전자 전달 플랫폼(BTN‑MB)를 개발했다고 29일 밝혔다.
연구팀은 먼저, 포도상구균의 주요 유전자 3종<바이오필름 형성(icaA), 세포 분열(ftsZ), 항생제 내성(mecA)>을 동시에 억제하는 짧은 DNA 조각(oligonucleotide)을 설계하고, 이를 탑재해 균내로 효과적으로 전달할 수 있는 나노입자(BTN)를 고안했다.
여기에 더해, 미세방울(microbubble, 이하 MB)을 사용해 포도상구균이 형성한 바이오필름인 미생물막의 투과성을 높인다. 연구팀은 두 가지 기술을 병용해, 세균의 증식과 내성 획득을 원천적으로 차단하는 이중 타격 전략을 구현했다.
이 치료 시스템은 두 단계로 작동한다. 먼저, 미세방울(MB)이 포도상구균이 형성한 세균성 생체막내 압력 변화로 나노입자(BTN)의 침투를 가능하게 만든다. 이어서, BTN이 생체막의 틈을 타 세균 내부로 침투해 유전자 억제제를 정확하게 전달한다. 이를 통해 포도상구균의 유전자 조절을 일으켜 생체막 재형성, 세포 증식, 그리고 항생제 내성 발현이 동시에 차단된다.
돼지 피부 감염 생체막 모델과 포도상구균 감염 마우스 상처 모델에서 시행한 실험 결과, BTN‑MB 치료군은 생체막 두께가 크게 감소했으며, 세균 수와 염증 반응도 현저히 줄어드는 뛰어난 치료 효과를 확인할 수 있었다.
이러한 결과는 기존 항생제 단독 치료로는 달성하기 어려운 수준이며, 향후 다양한 내성균 감염 치료에도 적용할 수 있는 가능성을 보여준다.
연구를 주도한 정현정 교수는 “이번 연구는 기존 항생제로는 해결할 수 없는 슈퍼박테리아 감염에 대해 나노기술, 유전자 억제, 물리적 접근법을 융합해 새로운 치료 해법을 제시한 것”이라며, “향후 전신 적용 및 다양한 감염 질환으로의 확장을 목표로 연구를 지속할 것”이라고 설명했다.
해당 연구는 우리 대학 생명과학과 정주연 학생과 일리노이대 안유진 박사가 제1 저자로 참여했으며, 국제학술지‘어드밴스드 펑셔널 머터리얼스(Advanced Functional Materials)’에 5월 19일 자로 온라인 게재됐다.
※ 논문 제목: Microbubble-Controlled Delivery of Biofilm-Targeting Nanoparticles to Treat MRSA Infection
※ DOI: https://doi.org/10.1002/adfm.202508291
한편, 이번 연구는 한국연구재단과 보건복지부의 지원을 받아 수행됐다.
암 발생 현상 등 유전자 발현 조절 원리 규명
다양한 암 발생과 암전이 현상, 줄기세포로부터의 조직 분화 및 발생, 신경 세포의 활성화 과정 등을 근본적으로 일으키는 유전자 발현 조절 단백질의 핵심 유전자 발현 네트워크를 발견했다. 우리 연구진은 이 발견을 기초로 하여 혁신적인 치료 기술 개발에 활용 가능성을 높였다.
우리 대학 생명과학과 김세윤 교수, 이광록 교수, 조원기 교수 공동연구팀이 동물 세포의 유전자 발현을 조절하는 핵심적인 원리를 규명했다고 22일 밝혔다.
이노시톨 대사 효소에 의해 만들어지는 이노시톨 인산 대사체는 진핵 세포의 신호전달 시스템에 필요한 다양한 이차 신호전달물질로 작용하며 암, 비만, 당뇨, 신경계 질환들에 폭넓게 관여한다.
연구팀은 이노시톨 대사 시스템의 핵심 효소인 IPMK 단백질이 동물 세포의 핵심 유전자 발현 네트워크의 중요한 전사 활성화 인자로 작용함을 규명했다.
포도당과 유사한 영양소로 알려진 이노시톨의 대사 반응에 핵심적으로 작용하는 효소인 IPMK 단백질(inositol polyphosphate multikinase)은 유전자 발현을 직접적으로 조절하는 기능을 가지고 있다. 특히 IPMK 효소는 동물 세포의 대표적인 전사 인자(transcription factor)인 혈청 반응 인자(serum response factor, 이하 SRF)에 의한 유전자 전사 과정에 중요하다고 보고된 바 있으나 작용하는 기전에 대하여 알려진 바는 없었다.
SRF 전사 인자는 최소 200~300여 개의 유전자 발현을 직접적으로 조절하는 단백질로서, 동물 세포의 성장과 증식, 세포 사멸, 세포의 이동성 등을 조절하며 심장과 같은 장기 발생에 필수적이다.
연구팀은 IPMK 단백질이 SRF 전사 인자와 직접적으로 결합한다는 사실을 발견하고 이를 통해 SRF 전사 인자의 3차원적 단백질 구조를 변화시킨다는 것을 밝혔다.
연구팀은 IPMK 효소에 의하여 활성화된 SRF 전사 인자를 통해 다양한 유전자들의 전사 과정이 촉진된다는 것을 밝혔다. 즉, IPMK 단백질은 SRF 전사 인자의 단백질 활성을 높이는 데 반드시 필요한 조절 스위치와 같은 역할을 수행하는 것임을 연구팀은 규명했다.
연구팀은 IPMK 효소와 SRF 전사 인자 사이의 직접적인 결합에 문제가 발생할 경우, SRF 전사 인자의 기능과 활성이 낮아져 유전자 발현에 심각한 장애가 발생한다는 점을 최종적으로 검증하였다.
특히 SRF 전사 인자가 가지고 있는 비정형 영역(Intrinsically disordered region, IDR)이 중요한 조절 부위라는 점을 밝힘으로써 비정형 단백질의 생물학적 중요성을 제시했다. 보통 단백질은 접힘을 통해 고유의 구조를 나타내지만 비정형 영역을 포함하게 되는 경우에는 특정한 단백질 구조가 관찰되지 않는다. 학계에서는 이러한 비정형 영역을 가지고 있는 단백질들을 비정형 단백질이라고 구분하고 어떠한 기능을 수행하는지 주목하고 있다.
김세윤 교수는 “이번 연구는 이노시톨 대사 시스템의 핵심 효소인 IPMK 단백질이 동물 세포의 핵심 유전자 발현 네트워크의 중요한 전사 활성화 인자이며 이를 증명하는 핵심 메커니즘을 제시한 중요한 발견”이라며, “SRF 전사 인자로부터 파생되는 다양한 암의 발생과 암전이 현상, 줄기세포로부터의 조직 분화 및 발생, 신경 세포 활성화 과정 등을 근본적으로 이해함으로써 혁신적인 치료 기술 개발 등에 폭넓게 활용되기를 바란다”라는 기대를 전했다.
이 연구는 세계적 국제학술지 ‘핵산 연구 (Nucleic Acids Research)’ (IF=16.7, 생화학 및 분자생물학 분야 상위 1.8%) 온라인판에 1월 7일 게재됐다. (논문명 : Single-molecule analysis reveals that IPMK enhances the DNA-binding activity of the transcription factor SRF) (doi: 10.1093/nar/gkae1281)
한편 이번 연구는 한국연구재단의 중견연구사업, 선도연구센터 지원사업, 글로벌 기초연구실 지원사업과 서경배과학재단, 삼성미래기술육성사업의 지원을 받아 수행됐다.
암세포를 정상세포로 되돌려 치료하는 원천기술 개발
지금까지 다양한 항암 치료 기술이 개발됐음에도 현재 시행되고 있는 모든 항암치료의 공통점은 암세포를 사멸시켜서 치료하는 것을 목표로 하고 있다. 이로 인해 암세포가 내성을 획득해 재발하거나 정상세포까지 사멸시켜 큰 부작용을 유발하는 등 근본적인 한계를 지니고 있다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대장암세포를 죽이지 않고 그 상태만을 변환시켜 정상 대장세포와 유사한 상태로 되돌림으로써 부작용 없이 치료할 수 있는 대장암 가역 치료를 위한 원천기술을 개발하였다고 22일 밝혔다.
연구팀은 정상세포의 암화 과정에서 정상적인 세포분화 궤적을 역행한다는 관찰 결과에 주목하고, 이를 기반으로 정상세포의 분화궤적에 대한 유전자네트워크의 디지털트윈을 제작하는 기술을 개발했다.
그리고 이를 시뮬레이션 분석해 정상세포 분화를 유도하는 마스터 분자스위치를 체계적으로 탐색해 발굴한 뒤 대장암세포에 적용했을 때 대장암세포의 상태가 정상화된다는 것을 분자세포 실험과 동물실험을 통해 입증했다.
이번 연구성과는 암세포를 정상세포로 가역화 하는 것이 우연한 현상적 발견에 의존하는 것이 아니라 암세포 유전자 네트워크의 디지털 트윈을 제작하고 분석함으로써 체계적으로 접근해 이루어낼 수 있음을 보인 원천기술 개발이며 이 기술을 다른 다양한 암종에 응용하여 암 가역 치료제 개발이 가능함을 제시한 것에 큰 의미가 있다.
조광현 교수는 "암세포가 정상세포로 변환될 수 있다는 것은 놀라운 현상이다. 이번 성과는 이를 체계적으로 유도해낼 수 있음을 증명한 것이다ˮ라고 말했다.
이어 “이번 연구 결과는 암세포를 정상세포로 되돌리는 가역 치료 개념을 최초로 제시한 성과들을 바탕으로 정상세포의 분화궤적을 체계적으로 분석해 암 가역화 치료타겟을 발굴하는 원천기술을 개발한 것이다”라고 강조했다.
우리 대학 공정렬 박사, 이춘경 박사과정 학생, 김훈민 박사과정 학생, 김주희 박사과정 학생 등이 참여한 이번 연구 결과는 와일리(Wiley)에서 출간하는 국제저널 `어드밴스드 사이언스(Advanced Science)' 12월 11일 字 온라인판 논문으로 출판됐다. (논문명: Control of cellular differentiation trajectories for cancer reversion) DOI: https://doi.org/10.1002/advs.202402132
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구사업 및 기초연구실사업의 지원을 통해 수행되었으며 연구 성과는 바이오리버트(주)로 기술이전 되어 실제 암 가역치료제 개발에 활용될 예정이다.
페트병 대체할 미생물 플라스틱 생산 성공하다
현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다.
우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다.
유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다.
*단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함
이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테리움에서 2-피론-4,6-다이카복실산과 4종의 피리딘 다이카복실산 (2,3-, 2,4-, 2,5-, 2,6-피리딘 다이카복실산)을 포함한 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 미생물 균주를 개발했다.
연구팀은 대사공학 기법을 통해 여러 유사 방향족 다이카복실산의 전구체로 사용되는 프로토카테츄산의 대사 흐름을 강화하고 전구체의 손실을 방지하는 플랫폼 미생물 균주를 구축했다.
이를 기반으로 전사체 분석을 통해 유전자 조작 타겟을 발굴해 76.17g/L의 2-피론-4,6-다이카복실산을 생산하였고, 3종의 피리딘 다이카복실산 생산 대사회로를 신규 발굴 및 구축하여 2.79g/L의 2,3-피리딘 다이카복실산, 0.49g/L의 2,4-피리딘 다이카복실산, 1.42g/L의 2,5-피리딘 다이카복실산을 생산하는 데 성공했다.
또한, 연구팀은 2,6-피리딘 다이카복실산 생합성 경로 구축 및 강화를 통해 15.01g/L의 생산을 확인하며 총 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 데 성공했다.
결론적으로, 2,4-, 2,5-, 2,6-피리딘 다이카복실산을 세계 최고 농도로 생산하는 데 성공하였다. 특히 2,4-, 2,5-피리딘 다이카복실산은 기존에 극미량 (mg/L) 생산되던 것을 g/L 규모의 생산까지 달성하였다.
이번 연구를 기반으로 다양한 폴리에스터 생산 산업공정으로의 응용이 기대되며, 유사 방향족 폴리에스터 생산에 관한 연구에도 적극 활용될 수 있으리라 기대된다.
교신저자인 이상엽 특훈교수는 “미생물을 기반으로 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 연구가 앞으로 미생물 기반의 바이오 단량체 산업이 석유 화학 기반의 화학산업을 대체하는 데 일조할 것”이라고 밝혔다.
해당 연구 결과는 국제 학술지인 `미국 국립과학원 회보(PNAS)'에 10월 30일 자 게재됐다.
※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids
※ 저자 정보 : 조재성(한국과학기술원, 공동 제1저자), 찌웨이 루오(한국과학기술원, 공동 제1저자), 문천우(한국과학기술원, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
암세포 약물반응 예측 ‘그레이박스’ 개발
지난 수십 년간 많은 의생명과학자의 집중적인 연구에도 불구하고 여전히 국내 사망원인 1위는 암이다. 이처럼 암 치료가 난해한 이유는 환자마다 암 발생의 원인이 되는 유전자 돌연변이와 그로 인한 유전자 네트워크 변형이 서로 달라서 전통적인 실험생물학 접근만으로 표적치료를 적용하는 데에는 본질적인 한계가 있기 때문이다. 한편 딥러닝과 같은 소위 블랙박스(black-box) 방식의 인공지능 기술을 활용해 실험을 대체하고 데이터 학습을 통해 약물 반응을 예측할 수 있으나 이에 대한 생물학적 근거를 설명할 수 없어 결과를 신뢰하기 어려웠다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 인공지능과 시스템생물학을 융합해 암세포의 약물 반응 예측 및 메커니즘 분석을 동시에 이룰 수 있는 새로운 개념의 ‘그레이박스’ 기술을 개발했다고 3일 밝혔다.
조광현 교수 연구팀은 높은 예측 성능을 보이지만 그 근거를 알 수 없어 블랙박스로 불리는 딥러닝과 복잡한 대규모 모델의 경우 예측 성능의 한계를 지니지만 예측 결과에 대한 상세한 근거를 제시할 수 있어서 화이트박스로 불리는 시스템생물학 기술을 융합함으로써 두 기술의 한계를 동시에 극복할 수 있는 소위 ‘그레이박스’ 기술을 착안했다.
연구팀은 다양한 암종의 돌연변이 및 표적항암제 타겟 유전자 정보를 집대성해 분자 조절 네트워크 모델을 구축함으로써 여러 암종과 항암제의 약물 반응 예측에 활용될 수 있는 범용적 골격 모델을 우선 정립했다. 특히 다양한 암종에서 돌연변이가 빈번하게 발생하는 유전자들을 중심으로 전암(pan-cancer) 유전자 네트워크를 제작했고 표적항암제별 약물 반응과 관련된 돌연변이 및 연관 유전자들로 구성된 부분네트워크(sub-network)를 추출함으로써 약물 반응 예측을 위한 시스템생물학 모델을 제작했다.
연구팀은 이렇게 제작된 모델의 매개변수를 딥러닝 블랙박스 최적화기를 통해 결정하는 방식으로 트라메티닙, 아파티닙, 팔보시클립 세 개의 표적항암제 및 대장암, 유방암, 위암 세 개의 암종에 대한 그레이박스 모델을 구축했다. 완성된 모델의 약물 반응 컴퓨터시뮬레이션 결과는 각 암종별 약물반응의 민감도 차이를 보이는 세포주(cancer cell lines) 실험을 통해 비교 검증됐다.
특히 개발된 모델은 미국 국립암연구소(National Cancer Institute)의 돌연변이 정보 기반 약물 반응 예측으로는 동일한 반응을 보일 것으로 예상된 암세포주들이 실제로는 서로 다른 약물 반응을 보일 수 있다는 것을 정확히 예측했으며, 약물 반응의 차이가 발생하는 원인 또한 세포 주별 분자 네트워크 동역학의 차이로 상세히 설명할 수 있었다.
이번 연구 성과는 학습에 의한 시뮬레이션 모델 최적화를 통해 블랙박스 모델인 인공지능 기술의 높은 예측력과 화이트박스 모델인 시스템생물학 기술의 해석력을 동시에 달성한 새로운 약물 반응 예측 기술 개발이어서 그 의미가 크다. 특히, 발생 원인이 이질적이고 복잡한 네트워크 질환인 암에 대해 범용적으로 활용가능한 약물 반응 예측 원천기술이므로 향후 기술 고도화를 통해 다양한 종류의 암종 및 환자 맞춤형 치료 전략 제시에 활용될 수 있을 것으로 기대된다.
조광현 교수는 "인공지능 기술의 높은 예측력과 시스템생물학 기술의 우수한 해석력을 동시에 갖춘 새로운 융합원천기술로서 향후 고도화를 통해 신약 개발 산업의 활용이 기대된다ˮ고 말했다.
바이오및뇌공학과 김윤성 박사, 한영현 박사 등이 참여한 이번 연구 결과는 셀 프레스(Cell Press)에서 출간하는 국제저널 `셀 리포트 메소드(Cell Reports Methods)' 5월 20일 字 표지논문으로 출판됐다. (논문명: A grey box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations)
논문링크: https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(24)00117-6
한편 이번 연구는 삼성미래기술육성사업 및 과학기술정보통신부와 한국연구재단의 중견연구사업 등의 지원으로 수행됐다.
사회처럼 건강한 유전자 커뮤니티의 모습을 찾다
구성원들 사이의 활발한 교류로 결속력이 높은 사회적 커뮤니티가 건강한 개인을 만들 듯, 유전자 커뮤니티의 결속력도 개인의 건강 상태에 영향을 미칠 수 있을까? 한국 연구진이 유전자 커뮤니티의 결속력 또한 개인의 건강 상태를 결정하고 환자 맞춤형 의료를 위해 활용될 수 있음을 보여 화제다.
우리 대학 바이오및뇌공학과 이도헌 교수 연구팀이 개인화된 유전자 네트워크에서 환자 특이적으로 결속력이 약화된 유전자 커뮤니티를 찾아내 환자 맞춤형으로 약물 표적을 예측할 수 있는 기술을 개발했다고 23일 밝혔다.
최근 고령화와 생활 습관 변화 등에 따라 암, 심혈관계 질환, 대사 질환 등 많은 복합질병의 발병률이 크게 증가하는 실정이다. 이에 전문가들은 개별 환자의 특성을 고려한 ‘환자 맞춤형 의료’를 제공해 그 치료 효과를 높임으로써 개인적, 사회적 의료비 부담을 경감해야 한다고 지적한다.
이도헌 교수 연구팀은 이러한 요구에 발맞춰 개인화된 유전자 네트워크를 정교하게 구축하고 해당 네트워크에서 각 유전자 커뮤니티의 결속력을 정확하게 측정할 수 있는 코지넷(COSINET, COmmunity COhesion Scores in Individualized gene Network Estimated from single Transcripotmics data) 기술을 개발했다.
연구진들은 수백 개의 정상 조직 유전자 발현 데이터를 근거로 유의미한 상관관계를 보이는 유전자 상호작용을 기반으로 정상 조직의 유전자 네트워크를 구축했다. 그리고 유전자 커뮤니티들의 유전자 상호작용마다 보이는 상관관계를 선형 회귀 분석을 통해 모델링한 뒤, 개별 환자의 유전자 발현량이 해당 예측 모델을 잘 따르는지를 통계적으로 분석했다. 이를 통해 환자 특이적으로 그 상호작용이 소실된 유전자 쌍을 정상 조직 유전자 네트워크에서 제거함으로써 개인화된 유전자 네트워크를 구축했다.
더 나아가 개인화된 유전자 네트워크에서 유전자들 사이의 최단 거리를 기반으로 소실된 유전자 상호작용이 각 유전자 커뮤니티 결속력 약화에 미치는 영향력을 정확하게 측정했다.
연구진들은 환자 특이적으로 그 결속력이 크게 감소한 유전자 커뮤니티를 통해 환자 특이적인 질병 기전을 설명할 수 있음을 보이고, 해당 유전자 커뮤니티에서 환자 특이적으로 결속력 약화에 크게 기여하는 유전자들을 찾아, 보다 효과적인 환자 맞춤형 약물 표적을 제안했다. 연구진들은 이러한 약물 표적 발굴 기술이 기존 기술 대비 약 4배 이상 효과적임을 증명했다.
이도헌 교수는 “여러 유전자가 관여하는 복합질병은 개별 유전자보다는 유전자들 사이의 상호작용을 고려하는 시스템적 관점에서 바라봐야 하며 현재 임상 현장에서 환자 맞춤형 의료를 위해 쓰이는 단일 유전자 기반의 바이오마커들은 복합질병의 이질성과 복잡성을 충분히 담아내기에는 한계가 있다. 따라서 이번 연구에서 개발한 개인화된 유전자 네트워크에서 유전자 커뮤니티의 결속력에 기반한 코지넷(COSINET) 기술이 복합질병의 환자 맞춤형 의료 실현을 위한 새로운 시각을 열어 줄 수 있을 것”이라고 말했다.
바이오및뇌공학과 이도헌 교수와 왕승현 박사과정이 공동으로 진행한 이번 연구는 영국 옥스퍼드대학교에서 발간하는 생명정보학 분야 최고 학술지인 `생명정보학 브리핑(Briefings in Bioinformatics)’ 2024년 5월호에 게재되고 온라인으로는 4월 15일 발표됐다.
(논문 제목: Community cohesion looseness in gene networks reveals individualized drug targets and resistance, https://academic.oup.com/bib/article/25/3/bbae175/7645997)
한편 이번 연구는 과학기술정보통신부 데이터 기반 디지털 바이오 선도 사업의 지원을 받아 수행됐다.