본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5
최신순
조회순
세계 최대 자율드론 챔피언쉽 대회 세계 3위 쾌거
우리 대학 전기및전자공학부 심현철 교수 연구팀이 2025년 4월 12일 아랍에미리트(UAE) 정부 후원으로 개최된 아부다비 자율 레이싱 대회(Abu Dhabi Autonomous Racing League, 이하 A2RL)의 드론 챔피언십 리그( Drone Championship League, 이하 DCL)에서 세계 3위를 차지하였다. 아부다비 국립 전시 센터 마리나(ADNEC Marina) 대회장에서 개최된 본 선 대회에서는 2024년 가을 예선을 통해 선발된 14개 팀들이 참가해 실력을 겨뤘다. 참가팀들은 ▲최단 비행시간 경연(AI Grand Challenge), ▲4대동시 자율비행, ▲양쪽에서 마주 보면서 고속으로 비행하는 드래그 레이싱, ▲AI 대 인간 조정사 대결 등 총 4개 부문에서 경합을 벌였다. 그 중 8개 팀이 최단 비행시간 경연 준결승에 진출했고, 이 중 KAIST는 네덜란드 델프트공대(TU Delft), UAE 기술혁신연구소(TII), 체코 공과대학(Czech Technical University, CTU)와 함께 결승에 올랐다. 결승에서는 델프트 공대가 1위를 차지했으며, UAE 기술혁신연구소가 2위, KAIST는 그 뒤를 이어 세계 종합 3위의 성과를 거두었다. 또한, 심현철 교수팀은 세계 최초로 개최된 자율비행 드론의 동시 자율비행에서 2위를, 양쪽에서 동시에 마주 보며 출발하는 드래그 레이싱(drag racing)에서도 2위를 차지하며 뛰어난 성과를 거두었다. 심 교수팀은 팀장인 한동훈 박사과정을 비롯해 마울라나 아자리(Maulana Azhari) 박사과정, 유제인 석사과정, 박성준 석사과정 등 총 4명으로 구성되어 있으며, 자체 개발한 영상기반 측위 기술과 고기동 비행 제어 기술을 바탕으로 우수한 기량을 선보여 총 10만 5천 달러의 상금을 수상하게 되었다. 이번 대회는 외부 카메라나 라이다(LiDAR) 없이 단안 카메라만을 활용하여 자율 비행 드론에 적용한 최초의 국제 대회로, 총 12개의 게이트가 설치된 실내 경연장에서 진행되었다. 상금 총액은 100만 달러에 달하며, 드론 기술의 미래를 선도하는 경쟁의 장이 되었다. A2RL DCL 자율비행 대회는 2017년 세계적인 로봇 기술 경연대회인 MBZIRC(Mohamed Bin Zayed International Robotics Competition) 이후 UAE 정부 지원으로 개최된 5번째 대규모 로보틱스 경진대회이다. 특히 이번 대회와 같은 카메라 기반 자율비행 드론 레이싱은 단순한 E-sports를 넘어서 현대전에 게임 체인저로 등장한 1인칭 시점(FPV) 드론에 직접적으로 적용될 수 있는 중요한 기술로서, 세계적으로 주목받고 있다. 심현철 교수는 “코로나로 인한 대회 중단과 연구팀 재편 등 연구 공백과 고속 비행을 제대로 실험할 환경을 구하기 어려운 여건 속에서도, 독자적인 측위 및 제어 기술을 완성해 결국 세계 유수의 연구팀들을 제치고 값진 성과를 거둘 수 있었다”고 밝혔다. 이어 “이번 결과에 만족하지 않고, 더욱더 경쟁력 있는 연구 역량 및 환경을 갖출 수 있다면 앞으로 열릴 국제 대회에서는 압도적인 기술력으로 세계 최고 수준의 성과를 만들어 내겠다”고 각오를 전했다. 심 교수는 2016년 세계적인 로봇 학회 IROS에서 세계 최초로 자율드론 레이싱을 개최한 자율 드론 레이싱 분야의 선구자이며, 같은 대회에서 2016년, 2018년 각각 우승 및 준우승을 차지했다. 또한, 2019년 미국 록히드 마틴(Lockheed Martin)사가 주최한 AlphaPilot 자율 드론 AI 경진대회에서는 3위를, 2019년, 2020년 과기정통부가 개최한 AI 그랜드 챌린지 드론 실내비행 부분에서 2회 연속 우승을 거두며 총 24억원의 후속 연구비를 지원받는 등 꾸준히 우수한 성과를 거두었다. 더불어 2024년 해양 환경에서 자율 로봇(무인 보트, 드론 등)의 기술 능력을 겨루는 국제 대회인 MBZIRC 해양 챌린지(Maritime Challenge)에서 KAIST 기계공학부 김진환 교수팀과 공동으로 참여하여 2등을 차지한 바 있다.
2025.04.18
조회수 300
AI 기반 효소 발굴하여 새로운 미생물 설계 가능
효소는 세포 내에서 일어나는 생화학적 반응을 촉매하는 단백질로, 세포의 대사 과정에서 핵심적인 역할을 수행한다. 이에 따라 새로운 효소의 기능을 규명하는 것은 미생물 세포공장 구축에서 핵심적인 과제다. KAIST 연구진이 인공지능(AI)을 활용해 자연에 존재하지 않는 새로운 효소를 설계함으로써, 미생물 세포공장 구축을 가속화하고 신약·바이오 연료 등 차세대 바이오산업의 개발 가능성을 크게 높였다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 AI를 활용한 효소 기능 예측 기술의 발전 과정과 최신 동향을 정리하고, AI가 새로운 효소를 찾고 설계하는데 어떤 역할을 해왔는지 분석하여 ‘인공지능을 이용한 효소 기능 분류’를 발표했다. 이상엽 특훈교수 연구팀은 이번 연구에서 머신러닝(Machine learning)과 딥러닝(Deep learning)을 활용한 효소 기능 예측 기술의 발전 과정을 체계적으로 정리·분석하여 제공했다. 초기의 서열 유사성 기반 예측 기법에서부터 합성곱 신경망, 순환 신경망, 그래프 신경망, 그리고 트랜스포머(Transformer) 기반 대규모 언어 모델까지 다양한 AI 기법이 효소 기능 예측 연구에 접목된 사례를 다루며, 이들 기술이 단백질 서열에서 의미 있는 정보를 어떻게 추출하고, 예측 성능을 극대화하는지를 분석했다. 특히, 딥러닝 기술을 활용한 효소 기능 예측은 단순한 서열 유사성 분석을 넘어, 구조적·진화적 정보 등 아미노산 서열에 내재된 효소의 촉매 기능과 관련된 중요한 특성을 자동으로 추출함으로써 보다 정밀한 예측이 가능하다는 점이 강조됐다. 이는 기존의 생명정보학적 접근법과 비교해 인공지능 모델이 가지는 차별성과 장점을 부각하는 중요한 부분이다. 또한, 생성형 인공지능 모델의 발전에 기반하여, 기존 효소 기능 예측을 넘어 자연계에 존재하지 않는 새로운 기능을 가진 효소를 생성하는 기술이 미래 연구 방향이 될 것으로 제시했다. 이러한 AI 기반 효소 예측 및 설계 기술의 지속적인 발전은 향후 바이오 산업과 생명공학 연구의 방향성에 큰 변화를 가져올 것으로 전망했다. 공동 제 1저자인 생명화학공학과 김하림 박사과정생은 “AI 기반 효소 기능 예측 및 효소 설계는 대사공학, 합성 생물학 및 헬스케어 등 다양한 분야에서 매우 중요”하다고 말했다. 이상엽 특훈교수는“AI 활용 효소 기능 예측은 다양한 생물학적 문제 해결에 효과적으로 적용될 수 있는 가능성을 보여주며 바이오 분야 전반의 연구를 가속화하는 데 크게 기여할 것.”이라고 밝혔다. 해당 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 저널인 `생명공학 동향(Trends in Biotechnology)'에 3월 28일자 게재됐다. ※ 논문명 : Enzyme Functional Classification Using Artificial Intelligence doi.org/10.1016/j.tibtech.2025.03.003 ※ 저자 정보 : 김하림(한국과학기술원, 공동 제1 저자), 지홍근(한국과학기술원, 공동 제1 저자), 김기배(한국과학기술원, 제3 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명 한편, 이번 연구는 과기정통부가 지원하는 석유 대체 친환경 화학기술 개발 사업의‘바이오 제조 산업 선도를 위한 첨단 합성 생물학 원천기술 개발’, 그리고 과기정통부와 보건복지부가 지원하는 ‘딥러닝 기반 합성 생물학을 이용한 혁신구조 항생제 개발’ 과제의 지원을 받아 수행됐다.
2025.04.17
조회수 435
건설재료의 성능 평가를 위한 실험 자동화 시스템 개발
빅데이터와 인공지능 기반의 건설재료 품질관리 혁신 기술 제시 우리 대학 건설및환경공학과 김재홍 교수 연구팀은 시멘트 분산제의 성능을 정밀하게 평가할 수 있는 자동화 실험 시스템을 개발했다. 이 시스템은 기존 수작업 실험의 한계를 극복하고, 데이터 사이언스와 머신러닝 기법을 활용해 시멘트 기반 재료의 품질 관리를 혁신적으로 개선할 수 있는 길을 열었다. 건설재료 품질관리의 도전과제 콘크리트는 전 세계에서 가장 많이 생산되는 공학 재료지만, 시멘트와 골재 같은 원재료가 지역마다 성질이 달라 품질과 성능의 변동성이 크다. 따라서 콘크리트 재료의 성능 시험에는 많은 수의 샘플이 필요하며, 이는 노동 집약적인 작업으로 이어진다. 김재홍 교수는 "건설재료는 다른 공학 재료에 비해 변동성이 매우 크기 때문에, 재료의 성능평가 신뢰성을 높이려면 충분한 양의 데이터가 필요합니다. 이를 위해서는 많은 수의 샘플을 제조하고 테스트해야 하는데, 기존의 수작업 방식으로는 단순히 품질 검증을 위한 작은 수의 샘플을 사용하여 현장에서 불량 레미콘 등의 문제가 종종 발생하고 있습니다"라고 설명했다. 혁신적인 자동화 실험 시스템 연구팀이 개발한 자동화 실험 시스템은 230mL 모르타르 샘플의 레올로지 특성을 정밀하게 측정할 수 있다. 이 시스템은 시료 준비, 재료 혼합, 레올로지 측정 등의 과정을 모두 자동화하여 인력 투입 없이도 정확하고 일관된 데이터를 생산할 수 있다. 연구팀은 이 시스템을 사용해 130개의 모르타르 샘플을 분석하여 시멘트 분산제의 효과를 포괄적으로 특성화했다. 주성분 분석(PCA)을 통해 토크 측정값의 뚜렷한 패턴을 발견했으며, 이를 통해 패턴의 분산을 설명하고 분산제 성능 차이를 효과적으로 포착할 수 있었다. 특히 이 자동화 시스템은 7%의 변동 계수로 우수한 재현성을 달성했으며, 이는 재료의 고유한 변동성으로 간주될 수 있다. 또한 관찰 기반 학습을 통해 시스템의 유용성을 확장하여 유동성과 블리딩 속도를 성공적으로 예측할 수 있었다. 이 내용은 건설공학 분야에서 권위 있는 학술지인 Cement and Concrete Research에 "Automated experimentation for evaluating cement dispersant performance"라는 제목으로 게재되었다. (https://doi.org/10.1016/j.cemconres.2025.107895) 연구 결과 및 향후 계획 연구 결과는 3세대 시멘트 분산제의 우수한 성능을 확인하는 동시에, 분산제 사용량-레올로지 관계에 대한 통합적인 분석을 제시하였다. 이러한 자동화 실험 방식은 시멘트 기반 재료의 더 효율적이고 포괄적인 평가를 위한 프레임워크를 확립했다는 데 의의가 있다. 김재홍 교수는 "이번 연구에서 개발한 자동화 실험 시스템은 단순히 실험 과정을 자동화하는 것을 넘어, 데이터 사이언스와 머신러닝을 통합하여 건설재료의 품질관리 패러다임을 변화시킬 수 있는 잠재력을 가지고 있습니다"라고 강조했다. 한편, 연구팀은 건설재료의 성능 평가를 위한 자동화 실험 시스템 개발에 앞서, 건설재료의 특성에 적합한 머신러닝 알고리즘을 개발하였다. KAIST 건설및환경공학과/데이터사이언스대학원 강인국 박사과정이 제1저자로 참여한 관찰 기반 학습(observation-based learning), 도메인 적응(domain adaptation) 학습 알고리즘 등에 관한 연구는, 건설공학 분야에서 권위 있는 학술지인 Cement & Concrete Composites 등에 게재되었다. (https://doi.org/10.1016/j.cemconcomp.2025.105943, https://doi.org/10.1016/j.conbuildmat.2023.133811). 연구팀은 앞으로 이 자동화 시스템을 확장하여 시멘트 분산제 성능 평가뿐만 아니라 강도 발현, 수화열, 내구성 등 다양한 콘크리트 성능 지표에 대한 자동화 실험을 수행할 계획이다. 또한 해외건설 및 국내건설 현장의 건설재료 변동성으로 인한 시공실패를 사전에 예측하고 방지하기 위한 성능평가 실험 자동화 및 로봇 플랫폼을 확장 구축할 예정이다. 김 교수는 "궁극적으로 우리의 목표는 건설산업에서 전문 테크니션 부족 문제, 기능인력 노령화 문제, 주52시간제 시행 등에 대응하기 위한 건설재료 품질관리 및 성능평가의 완전한 자동화 시스템을 구축하는 것입니다. 이를 통해 데이터 기반의 의사결정이 가능한 스마트 건설 환경을 조성하고자 합니다"라고 밝혔다. 이 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었다.
2025.04.14
조회수 535
지드래곤(권지용 초빙교수)·이진준 교수·우주연구원 세계 최초 우주음원 송출 실험 성공
우리 대학은 세계적인 미디어 아티스트인 문화기술대학원 이진준 교수와 글로벌 아티스트 지드래곤(G-DRAGON)과의 협업을 통해, 지난 4월 9일 KAIST 우주연구원에서 실시한 세계 최초로 미디어아트를 기반으로 한 '우주 음원 송출 프로젝트'를 성공적으로 추진했다. 이번 프로젝트는 KAIST와 갤럭시코퍼레이션과 추진 중인‘AI 엔터테크 연구센터’의 일환으로 제안된 것이다. 갤럭시코퍼레이션 소속 아티스트이자 KAIST 기계공학과 초빙교수로 활동 중인 가수 지드래곤(본명 권지용)의 메세지와 음원을 세계 최초로 우주로 송출하는 프로젝트이다. 과학기술, 예술, 대중음악이 결합된 융복합 프로젝트로, KAIST의 첨단 우주 기술과 이진준 교수의 미디어아트 작품, 그리고 지드래곤의 음성과 음원(홈스윗홈, HOME SWEET HOME)이 하나로 연결된 새로운 형태의 ‘우주 문화 콘텐츠’ 실험이다. 이번 협업은 ‘인간 내면의 우주를 외부 우주로 확장하는 감성적 신호’를 주제로 기획되었다. 지드래곤의 홍채 이미지는 그 고유성과 정체성을 상징하는 내면의 창으로 AI를 통해 증강되었고, 신곡 〈홈스윗홈〉은 그 감성의 진동을 담은 오디오 메시지로 결합되었다. 이는 KAIST 우주연구원이 개발한 차세대 소형위성과 우주로 실제 송출되며, 개인의 내면의 우주가 지구 밖의 우주를 향해 전파되는 상징적 퍼포먼스를 완성했다. 현장에서 이진준 교수의 시네마틱 미디어아트 작품 〈Iris(아이리스)〉가 공개되었다. 이 작품은 세계 최초 KAIST 우주연구원의 13m 우주 안테나에 프로젝션 매핑 방식*으로 상영되었다. 지드래곤의 홍채 이미지를 기반으로 생성형 인공지능(AI) 기술을 활용해 제작된 영상으로, 천년의 시간을 품은 에밀레종의 종소리 데이터를 활용한 사운드와 결합해 시간과 공간을 초월하는 감성적 예술 경험을 선사했다. *프로젝션 매핑(Projection Mapping): 실제 구조물에 빛과 영상을 투사해 시각적 변화를 만들어내는 기술로, 공간을 예술적으로 재해석하는 표현 방식임 본 작업은 홍채, 심박, 뇌파 등 생체데이터 기반의 뉴미디어 기술을 바탕으로 한 KAIST TX랩과 이 교수의 주요 연구 성과 중 하나다. 이진준 교수는 “홍채는 ‘영혼의 거·울’로 불릴 만큼 내면의 감정과 정체성을 비추는 상징으로, 이번 작품은 지드래곤의 시선을 따라 ‘인류의 내면으로 바라본 무한한 우주’를 표현하고자 했다”고 말했다. 이어“우주는 기술의 영역인 동시에 상상력과 감성의 무대이며, AI를 비롯한 과학의 언어로 예술을 말하고 예술의 형식으로 과학을 상상한 새로운 시도로 미지와의 조우를 기대한다”라고 밝혔다. 최용호 갤럭시코퍼레이션 CHO(Chief Happiness Officer)는 “지드래곤의 목소리와 음악이 이제 우주를 향한 항해를 시작했다. 이번 프로젝트는 음악을 인류의 유산으로 남기는 행위인 동시에 우주와 소통을 시도하는 중요한 의미”라며 “이는 인류 문화를 우주에 알리는 선구자적 행보이자, 비틀스와 비견될 음악 역사의 새 장을 여는 기념비적인 퍼포먼스로 남을 것”이라고 전했다. 갤럭시코퍼레이션은 KAIST와의 협력을 통해 미래 엔터테크 산업을 선도하고 있으며, 최근 MS 나델라 CEO와의 비공개 간담회에서 유일한 엔터테크 기업으로 선정된 바 있다. 특히 AI 망자 콘텐츠를 포함한 새로운 형태의 AI 엔터테크 콘텐츠에 대해 "상상의 선구자"라는 평가를 받으며 AI 엔터테크의 글로벌화를 추진하고 있다. KAIST 우주연구원은 본 프로젝트를 통해 위성 기술의 새로운 활용 가능성을 제시하며, 과학이 보다 대중적인 방식으로 사회와 연결될 수 있는 모델을 보여주었다. 이광형 총장은 “KAIST는 언제나 새로운 상상력과 도전이 가능하도록 지원하는 곳”이라며, “과학기술과 예술이 융합된 이번 프로젝트처럼 앞으로도 누구도 생각지 못한 창의적인 연구가 이어질 수 있도록 노력하겠다”고 밝혔다. 한편, 지드래곤 권지용 교수의 소속사인 갤럭시코퍼레이션은 IP, 미디어, 테크, 엔터테인먼트 융합 기술을 기반으로 새로운 패러다임을 제시하고 있는 AI 엔터테크 기업이다.
2025.04.10
조회수 2541
갤럭시코퍼레이션과 ‘AI 엔터테크 연구센터’ 현판식 개최
우리 대학은 인공지능(AI) 엔터테크 기업 갤럭시코퍼레이션(대표 최용호)과 함께 ‘AI 엔터테크 연구센터’ 설립을 위한 현판식을 KAIST 본원에서 개최한다. 이번 협력은 KAIST가 추진해 온 예술 융합 연구 전략의 일환으로, 과학기술을 기반으로 한 창의적 문화 콘텐츠 개발을 통해 미래형 K-Culture를 주도하려는 노력의 연장선에 있다. KAIST는 단순한 기술 개발을 넘어, 감성 기술과 문화적 상상력의 융합을 통해 콘텐츠 산업의 지평을 넓히는 ‘테크-아트(Tech-Art)’ 융합 모델을 지속적으로 실현해 오고 있다. 앞서 KAIST는 세계적인 소프라노 조수미 초빙석학교수와의 협력으로 ‘조수미 아트&테크 연구센터’를 설립하고, AI 기반의 인터랙티브 공연 기술, 몰입형 콘텐츠 등 예술과 공학의 융합 연구를 선도해왔다. 이번 ‘AI 엔터테크 연구센터’ 설립은 K-콘텐츠 산업의 기술적 확장을 위한 새로운 도전으로 평가받고 있다. 또한, 갤럭시코퍼레이션 소속 아티스트이자 KAIST 기계공학과 초빙교수로 활동 중인 가수 지드래곤(본명 권지용)의 역할도 큰 계기가 됐다. 권 교수는 작년 KAIST에 임명된 이후, 엔터테인먼트와 첨단기술을 융합하는 ‘AI 엔터테크’ 분야의 발전을 위해 소속사를 통해 KAIST 연구과제를 공모하고 연구센터 설립을 적극 추진해 왔다. AI 엔터테크 연구센터는 올해 3분기 정식 출범을 앞두고 있으며, 이번 현판식은 권지용 교수의 KAIST 방문 일정에 맞춰 진행됐다. 갤럭시코퍼레이션은 최근 마이크로소프트(MS) 나델라 CEO와 유일하게 엔터테크 기업 자격으로 비공개 간담회를 가지며, AI 엔터테크의 글로벌화를 본격 추진하고 있다. 또한 지난해부터 KAIST와 협력 관계를 구축, 연구센터 설립을 통해 시공간을 초월하는 엔터와 테크의 융합을 적극적으로 모색한다는 방침이다. 권지용 교수는 이날 오후 KAIST 류근철 스포츠컴플렉스에서 열리는 KAIST와 헤럴드미디어그룹, 국가과학기술연구회가 공동 주최하는 ‘이노베이트 코리아 2025’ 행사에 참석해, ‘AI 엔터테크의 미래’를 주제로 스페셜 토크에 나선다. 이번 토크쇼에는 권 교수 외에도 KAIST 기계공학과 이승섭 교수, 경희대학교 김상균 교수, 갤럭시코퍼레이션 최용호 대표가 함께 참여한다. 양 기관은 지난해 K-팝 글로벌 확산을 위한 과학기술 공동연구를 골자로 MOU를 체결한 바 있으며, 이번 연구센터 설립은 그 실질적인 첫 결실이다. 연구센터가 본격적으로 가동되면, AI 기반 엔터테크 플랫폼 개발, 글로벌 콘텐츠 기술 공동연구 등 다양한 프로젝트가 추진될 예정이다. 최용호 갤럭시코퍼레이션 CHO(Chief Happiness Officer)는 “이번 협력은 KAIST AI 및 최첨단 기술을 팬덤 플랫폼에 접목시켜 전 세계 팬들에게 완전히 새로운 엔터테인먼트 경험을 제공하는 출발점”이라며 “AI 엔터테크의 융합은 단순한 기술적 진보를 넘어 인류의 삶을 더욱 풍요롭게 변화시키는 혁신의 원동력”이라고 전했다. 이광형 총장은 “KAIST의 과학기술 역량이 권지용 교수의 글로벌 감각과 결합해, K-컬처의 기술적 진화를 이끌 것이라 확신한다”며, “KAIST의 도전정신과 연구 DNA가 엔터테크 시장에 새로운 물결을 일으키길 기대한다”고 밝혔다. 한편, 지드래곤 권지용 교수의 소속사인 갤럭시코퍼레이션은 IP, 미디어, 테크, 엔터테인먼트 융합 기술을 기반으로 새로운 패러다임을 제시하고 있는 AI 엔터테크 기업이다.
2025.04.09
조회수 936
인공지능반도체대학원, 제2회 한국인공지능시스템포럼 AI 산업혁신 논의
우리 대학 인공지능반도체대학원 주최로 20일(목) 오전 대전 오노마 호텔에서 ‘제2회 한국인공지능시스템포럼(KAISF) 조찬 강연회’가 성황리에 개최되었다. 본 행사는 인공지능(AI) 기술의 최신 동향과 혁신 및 응용, 특히 AI-X(AI-특정산업)에 대해 다양한 분야의 전문가들이 모여 심도 있는 논의를 진행하는 자리로 LG AI 연구원의 최정규 상무가 LLM(거대언어모델)에 대해 개발에 대해 발표한다. 조찬 회의에는 총 65명의 AI 전문가가 참석하였으며, LG AI 연구원에서 최근 개발하고 공개한 대규모 언어 모델인 ‘엑사원(EXAONE)에 대해 Driving the Future of AI Innovation’라는 주제로 발제 발표가 진행되었다. 최정규 LG AI 연구원 상무는 LG 엑사원의 현재 연구 현황과 향후 글로벌 AI 시장에서의 계획을 발표하였으며 특히 최근 AI 생태계를 뜨겁게 달구고 있는 ‘딥시크(Deepseek)’를 중심으로, 글로벌 AI 경쟁 속에서 한국 AI 기업이 나아가야 할 방향과 기회에 대해 논의하였다. 이번 강연회에서는 LLM 기술의 산업적 적용 가능성도 주요 의제로 다뤄졌다. 전문가들은 LLM 기술이 금융, 의료, 제조, 국방 및 교육 등 다양한 사업에서 어떻게 활용될 수 있는지를 논의하며, 실제 적응 사례도 공유했다. 유회준 인공지능반도체대학원장 겸 한국인공지능시스템포럼 의장은“이번 강연회를 통해 대전을 중심으로 AI에 의한 산업전환 (AI-X)이 주도되고 이들의 적용 사례가 전국적으로 공유되면 좋겠다”며 산학연 협력을 강화하는데 주력하자고 말했다. 한국인공지능시스템포럼은 앞으로도 지속적으로 포럼과 프로그램을 운영하며 AI-X을 통한 한국 산업 혁신을 선도하는 중심 허브로 자리매김할 계획임을 밝혔다. 또한, 대전을 중심으로 한국의 모든 연구자 및 산업 관계자들이 정보를 공유하고 협력할 수 있도록 지원할 예정이다.
2025.03.20
조회수 912
챗GPT 등 대형 AI모델 학습 최적화 시뮬레이션 개발
최근 챗GPT, 딥시크(DeepSeek) 등 초거대 인공지능(AI) 모델이 다양한 분야에서 활용되며 주목받고 있다. 이러한 대형 언어 모델은 수만 개의 데이터센터용 GPU를 갖춘 대규모 분산 시스템에서 학습되는데, GPT-4의 경우 모델을 학습하는 데 소모되는 비용은 약 1,400억 원에 육박하는 것으로 추산된다. 한국 연구진이 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 최적의 병렬화 구성을 도출하도록 돕는 기술을 개발했다. 우리 대학 전기및전자공학부 유민수 교수 연구팀은 삼성전자 삼성종합기술원과 공동연구를 통해, 대규모 분산 시스템에서 대형 언어 모델(LLM)의 학습 시간을 예측하고 최적화할 수 있는 시뮬레이션 프레임워크(이하 vTrain)를 개발했다고 13일 밝혔다. 대형 언어 모델 학습 효율을 높이려면 최적의 분산 학습 전략을 찾는 것이 필수적이다. 그러나 가능한 전략의 경우의 수가 방대할 뿐 아니라 실제 환경에서 각 전략의 성능을 테스트하는 데는 막대한 비용과 시간이 들어간다. 이에 따라 현재 대형 언어 모델을 학습하는 기업들은 일부 경험적으로 검증된 소수의 전략만을 사용하고 있다. 이는 GPU 활용의 비효율성과 불필요한 비용 증가를 초래하지만, 대규모 시스템을 위한 시뮬레이션 기술이 부족해 기업들이 문제를 효과적으로 해결하지 못하고 있는 상황이다. 이에 유민수 교수 연구팀은 vTrain을 개발해 대형 언어 모델의 학습 시간을 정확히 예측하고, 다양한 분산 병렬화 전략을 빠르게 탐색할 수 있도록 했다. 연구팀은 실제 다중 GPU 환경에서 다양한 대형 언어 모델 학습 시간 실측값과 vTrain의 예측값을 비교한 결과, 단일 노드에서 평균 절대 오차(MAPE) 8.37%, 다중 노드에서 14.73%의 정확도로 학습 시간을 예측할 수 있음을 검증했다. 연구팀은 삼성전자 삼성종합기술원와 공동연구를 진행하여 vTrain 프레임워크와 1,500개 이상의 실제 학습 시간 측정 데이터를 오픈소스로 공개(https://github.com/VIA-Research/vTrain)하여 AI 연구자와 기업이 이를 자유롭게 활용할 수 있도록 했다. 유민수 교수는 “vTrain은 프로파일링 기반 시뮬레이션 기법으로 기존 경험적 방식 대비 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 학습 전략을 탐색하였으며 오픈소스를 공개하였다. 이를 통해 기업들은 초거대 인공지능 모델 학습 비용을 효율적으로 절감할 것이다”라고 말했다. 이 연구 결과는 방제현 박사과정이 제1 저자로 참여하였고 컴퓨터 아키텍처 분야의 최우수 학술대회 중 하나인 미국 전기전자공학회(IEEE)·전산공학회(ACM) 공동 마이크로아키텍처 국제 학술대회(MICRO)에서 지난 11월 발표됐다. (논문제목: vTrain: A Simulation Framework for Evaluating Cost-Effective and Compute-Optimal Large Language Model Training, https://doi.org/10.1109/MICRO61859.2024.00021) 이번 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단, 정보통신기획평가원, 그리고 삼성전자의 지원을 받아 수행되었으며, 과학기술정보통신부 및 정보통신기획평가원의 SW컴퓨팅산업원천기술개발(SW스타랩) 사업으로 연구개발한 결과물이다.
2025.03.13
조회수 1453
스스로 가설을 세워 검증하는 뇌 기반 AI 기술
뇌의 맥락 추론 방식이 챗지피티 같은 대규모 인공지능 모델과 어떻게 다를까? 우리 연구진이 ‘뇌처럼 생각하는 인공지능’기술로서 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간이나 동물과 유사하게 스스로 가설을 세워 검증하는 신개념 인공지능 모델을 개발하는데 성공했다. 우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 생명과학과 정민환 교수(IBS 시냅스 뇌질환 연구단 부연구단장) 연구팀이 동물이 가설을 세워 일관된 행동 전략을 유지함과 동시에, 본인의 가설을 스스로 의심하고 검증하면서 상황에 빠르게 적응하는 새로운 강화학습 이론을 제시하고 뇌과학적 원리를 규명했다고 20일 밝혔다. 현재 상황에 맞게 행동의 일관성과 유동성 사이의 적절한 균형점을 찾아가는 문제를 ‘안정성-유동성의 딜레마(Stability-flexibility dilemma)’라 한다. 이를 위해서는 현재 본인의 판단이 맞는지를 계속 검증하고 수정할 수 있어야 한하는데 뇌과학 및 인공지능 분야에서 다양한 연구가 있었으나 아직까지 완벽한 해법이 알려진 바가 없다. 연구팀은 스스로 세운 가설을 바탕으로 다음 상황을 예측하고 확인하는 행동 패턴을 동역학적으로 프로파일링 할 수 있는 새로운 방식을 고안했고, 이를 바탕으로 전통적인 강화학습 이론과 최신 인공지능 알고리즘 모두 동물의 관련 행동을 제대로 설명하지 못한다는 것을 발견했다. 이어 연구팀은 동물의 현재 상황에 대한 가설을 세우고, 가설의 예측 오류를 바탕으로 행동 전략을 비대칭적으로 업데이트하는 새로운 적응형 강화학습 이론과 모델을 제안했다. 최신 인공지능 모델은 효율적 문제 해결에 집중하다 보니 인간이나 동물의 행동을 잘 설명하지 못하는 경우가 많은 반면, 제안 모델은 예상치 못한 사건에 대한 동물의 행동을 최신 인공지능 모델 대비 최대 31%, 평균 15% 더 잘 예측함을 보였다. 특히, 이 결과는 기존 연구에서 발표된 네 가지 서로 다른 동물 실험 데이터(two-step task, two-armed bandit task, T-maze task, two-armed bandit task with MSN inactivation) 분석을 통해 일관성 있게 재현되었다. 연구팀은 더 나아가 중뇌 기저핵* 선조체**속 중간크기 가시뉴런***이 가설 기반 적응형 강화학습 과정에 관여함을 밝혔다. 직접 경로 가시뉴런들은 예상한 사건을 마주한 경험을, 간접 경로 가시뉴런들은 예상하지 못한 사건을 마주한 경험을 부호화해 행동 전략을 조절함을 보였다. *기저핵(Basal Ganglia): 대뇌피질, 시상, 뇌간 등 운동 조절 및 학습하는 기능을 담당하는 뇌 부위 **선조체(Striatum): 기저핵의 일부로 가치 평가 및 강화학습 능력과 관련된 부위 ***가시뉴런Medium Spiny Neuron, MSN): 선조체의 약 90%를 차지하는 대표적 신경세포로 신경활동을 억제하는 특징을 가지고 있음 본 연구 결과는 뇌의 맥락 추론 방식이 대규모 인공지능 모델과 근본적으로 다르다는 것을 보여준다. 챗지피티(ChatGPT)나 딥시크와 같은 인공지능 모델은 사용자 입력으로부터 맥락 정보를 추정하고 이를 바탕으로 필요한 전문가 시스템에 매칭하며 (딥시크 모델은 강화학습을 사용하여 매칭), 새로운 정보가 들어올 때까지는 이것이 맞다고 가정한다. 이와 달리 뇌는 스스로 추정한 맥락(가설)을 의심하고, 의심이 확인되는 즉시 새로운 맥락을 적극 받아들인다. 이는 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간과 유사한 추론엔진을 구성할 수 있는 새로운 방향성을 제시한다. 본 연구는 뇌과학-인공지능 융합연구로서, 실제 분야에 널리 활용될 수 있다. 예를 들어, 인간의 동역학적 행동 프로파일링 기술을 이용하면 개개인의 가설 수립, 검증 학습 능력 분석이 가능하므로, 맞춤형 교육 커리큘럼 디자인, 인사 및 인력관리 시스템, 인간-컴퓨터 상호작용 분야에 바로 적용할 수 있다. 제안된 적응형 강화학습 모델은 ‘뇌처럼 생각하는 인공지능’기술로서 인간-인공지능 가치 정렬 (Value alignment) 문제 해결에 활용될 수 있다. 또한 이 과정에 관여하는 것으로 알려진 기저핵 내 보상학습 회로와 관련된 중독이나 강박증과 같은 정신질환의 뇌과학적 원인 규명에 활용될 수 있다. 연구 책임자인 이상완 교수는 "이번 연구는 인공지능의 강화학습 이론만으로 설명할 수 없는 뇌의 가설 기반 적응학습 원리를 밝혀낸 흥미로운 사례ˮ라면서 "스스로 의심하고 검증하는 뇌과학 이론을 대규모 인공지능 시스템 설계와 학습 과정에 반영하면 신뢰성을 높일 수 있을 것ˮ이라고 말했다. 뇌인지공학 프로그램 양민수 박사과정 학생이 1 저자, 생명과학과 정민환 교수가 공동 저자, 뇌인지과학과 이상완 교수가 교신저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스 (Nature Communications)‘ 2월 20일자로 게재됐다. (논문명: Striatal arbitration between choice strategies guides few-shot adaptation) DOI: 10.1038/s41467-025-57049-5) 한편 이번 연구는 과학기술정보통신부 정보통신기획평가원 SW스타랩, 한계도전 R&D 프로젝트, 한국연구재단 중견연구자 및 KAIST 김재철AI대학원 사업 지원을 받아 수행됐다.
2025.02.27
조회수 2603
챗GPT를 이용한 개인정보 악용 가능성 규명
최근 인공지능 기술의 발전으로 챗GPT와 같은 대형 언어 모델(이하 LLM)은 단순한 챗봇을 넘어 자율적인 에이전트로 발전하고 있다. 구글(Google)은 최근 인공지능 기술을 무기나 감시에 활용하지 않겠다는 기존의 약속을 철회해 인공지능 악용 가능성에 대한 논란이 불거진 점을 상기시키며, 연구진이 LLM 에이전트가 개인정보 수집 및 피싱 공격 등에 활용될 수 있음을 입증했다. 우리 대학 전기및전자공학부 신승원 교수, 김재철 AI 대학원 이기민 교수 공동연구팀이 실제 환경에서 LLM이 사이버 공격에 악용될 가능성을 실험적으로 규명했다고 25일 밝혔다. 현재 OpenAI, 구글 AI 등과 같은 상용 LLM 서비스는 LLM이 사이버 공격에 사용되는 것을 막기 위한 방어 기법을 자체적으로 탑재하고 있다. 그러나 연구팀의 실험 결과, 이러한 방어 기법이 존재함에도 불구하고 쉽게 우회해 악의적인 사이버 공격을 수행할 수 있음이 확인됐다. 기존의 공격자들이 시간과 노력이 많이 필요한 공격을 수행했던 것과는 달리, LLM 에이전트는 이를 평균 5~20초 내에 30~60원(2~4센트) 수준의 비용으로 개인정보 탈취 등이 자동으로 가능하다는 점에서 새로운 위협 요소로 부각되고 있다. 연구 결과에 따르면, LLM 에이전트는 목표 대상의 개인정보를 최대 95.9%의 정확도로 수집할 수 있었다. 또한, 저명한 교수를 사칭한 허위 게시글 생성 실험에서는 최대 93.9%의 게시글이 진짜로 인식됐다. 뿐만 아니라, 피해자의 이메일 주소만을 이용해 피해자에게 최적화된 정교한 피싱 이메일을 생성할 수 있었으며, 실험 참가자들이 이러한 피싱 이메일 내의 링크를 클릭할 확률이 46.67%까지 증가하는 것으로 나타났다. 이는 인공지능 기반 자동화 공격의 심각성을 시사한다. 제1 저자인 김한나 연구원은 "LLM에게 주어지는 능력이 많아질수록 사이버 공격의 위협이 기하급수적으로 커진다는 것이 확인됐다”며, "LLM 에이전트의 능력을 고려한 확장 가능한 보안 장치가 필요하다”고 말했다. 신승원 교수는 “이번 연구는 정보 보안 및 AI 정책 개선에 중요한 기초 자료로 활용될 것으로 기대되며, 연구팀은 LLM 서비스 제공업체 및 연구기관과 협력하여 보안 대책을 논의할 계획이다”라고 밝혔다. 전기및전자공학부 김한나 박사과정이 제1 저자로 참여한 이번 연구는 컴퓨터 보안 분야의 최고 학회 중 하나인 국제 학술대회 USENIX Security Symposium 2025에 게재될 예정이다. (논문명: "When LLMs Go Online: The Emerging Threat of Web-Enabled LLMs") DOI: 10.48550/arXiv.2410.14569 한편 이번 연구는 정보통신기획평가원, 과학기술정보통신부 및 광주광역시의 지원을 받아 수행됐다.
2025.02.24
조회수 1774
적층 제조된 티타늄 합금의 강도-연성 딜레마 AI 기술로 극복
우리 대학 기계공학과 이승철 교수 연구팀이 POSTECH 신소재공학과 김형섭 교수 연구팀과 함께 인공지능 기술을 활용해 Ti-6Al-4V 합금의 강도-연성 딜레마를 극복하고 고강도·고연신 금속 제품을 생산해 내는 데 성공했다고 밝혔다. 연구팀이 개발한 인공지능은 3D프린팅 공정변수에 따른 기계적 물성을 정확히 예측하는 동시에 예측의 불확실성 정보를 제공하며 이 두 정보를 활용해 실제 3D프린팅을 진행할 가치가 높은 공정변수를 추천한다. 3D프린팅 기술 중에서도 레이저 분말 베드 융합은 뛰어난 강도 및 생체 적합성으로 유명한 Ti-6Al-4V 합금을 제조하기 위한 혁신적인 기술이다. 그러나 3D프린팅으로 제작된 이 합금은 강도와 연성을 동시에 높이기 어렵다는 문제점이 있다. 3D프린팅의 공정변수와 열처리 조건을 조절해 이를 해결하고자 하는 연구들이 있었지만, 방대한 공정변수 조합들을 실험 및 시뮬레이션으로 탐색하기에는 한계가 있었다. 연구팀이 개발한 능동 학습(Active Learning) 프레임워크는 다양한 3D프린팅 공정변수 및 열처리 조건들을 빠르게 탐색하여 그 중 합금의 강도와 연성을 동시에 높일 수 있다고 예상되는 것을 추천한다. 이런 추천은 인공지능 모델이 각 공정변수 및 열처리 조건에 대해 예측한 극한 인장 강도와 전연신율을 비롯해 예측의 불확실성 정보도 활용해 진행되며 추천된 것에 대해선 3D프린팅 및 인장 실험을 통해 실제 물성값을 얻게 된다. 새롭게 얻어낸 물성값을 인공지능 모델 학습에 추가로 활용하여 반복적으로 공정변수 및 열처리 조건들을 탐색하였으며 단 5번만의 시도로 고성능 합금을 생산해 낼 수 있는 공정변수 및 열처리 조건들을 도출하였다. 이를 적용해 3D프린팅한 Ti-6Al-4V 합금은 극한 인장 강도 1190MPa, 전연신율 16.5%를 기록하며 강도-연성 딜레마를 극복해 냈다. 이승철 교수는 “이번 연구에서 3D프린팅 공정변수와 열처리 조건을 최적화하여 고강도·고연신 Ti-6Al-4V 합금을 최소한의 실험만으로 도출해 낼 수 있었으며, 기존 연구들과 비교해 비슷한 극한 인장 강도를 가지지만 더 큰 전연신율을 가진 합금을 그리고 비슷한 전연신율을 가지지만 더 큰 극한 인장 강도를 가진 합금을 제작할 수 있었다.”라고 말했다. “또한, 기계적 물성뿐만 아니라 열전도도 및 열팽창과 같은 다른 물성에 관해서도 본 연구 방법이 적용되면 3D프린팅 공정변수와 열처리 조건에 대한 효율적인 탐색이 가능할 것으로 예상된다”라고 덧붙였다. 이번 연구 결과는 국제 학술지 ‘Nature Communications’에 지난 1월 22일에 출판되었으며 (https://doi.org/10.1038/s41467-025-56267-1), 이 연구는 한국연구재단 나노·소재기술개발사업 및 선도연구센터사업의 지원을 받아 진행됐다.
2025.02.21
조회수 1761
김정호 교수, 한국반도체학술대회 ‘2025 강대원 상’ 수상
우리 대학 전기및전자공학부 김정호 교수가 회로·시스템 분야 '2025년 강대원 상'을 한국반도체학술대회 상임운영위원회로부터 수상한다. 김 교수는 HBM 개발에 기여한 공로를 인정받아 SK하이닉스 이강욱 부사장과 함께 수상한다. 시상식은 13일 오후 강원도 하이원그랜드호텔에서 한국반도체산업협회 · 한국반도체연구조합 · DB하이텍이 공동으로 주관, 개최하는 ‘제32회 한국반도체학술대회(KCS 2025)’ 개막식에서 진행된다. 강대원 상은 세계 최초로 모스펫(MOSFET)과 플로팅게이트를 개발해, 반도체 기술 발전에 신기원을 이룩한 고(故) 강대원 박사를 기리기 위해 제정되었으며, 한국반도체학술대회 상임운영위원회가 지난 2017년 열린 제24회 반도체 학술대회부터 강대원 박사를 이을 인재들을 발굴, 선정해서 시상하고 있다. 김정호 교수는 ‘HBM 아버지’로 불리는 인공지능 반도체 분야의 세계적 권위자이다. 지난 20년 이상 HBM 관련 설계 기술을 세계적으로 주도해 왔다. 특히 HBM 실리콘관통전극(TSV), 인터포저, 신호선 설계(SI), 전력선 설계(PI) 등을 연구하며 세계적으로 연구의 독창성을 인정받고 있다. 이것뿐만 아니라 2010년부터 HBM 상용화 설계에 직접 참여하고 있다. 그 결과, 현재의 인공지능 시대를 가능하게 했다는 평가를 받는다. 최근에는 6세대 HBM인 HBM4를 비롯해, HBM5, HBM6와 같은 차세대 HBM 구조와 아키텍트를 주도적으로 연구 중이다. 여기에 한 걸음 더 나아가 HBM 설계를 인공지능으로 자동화하려는 시도를 병행하고 있다. 특히 강화학습과 생성 인공지능을 결합해 HBM의 전기적, 열적 최적화 연구를 세계적 수준으로 이끌며, 이 분야의 연구를 선도하고 있다. 작년 6월에는, 삼성전자와 공동으로 KAIST에 ‘시스템아키텍트대학원’을 설립해 인공지능 반도체 분야 H/W 및 S/W 동시 설계가 가능한 고급 전문 인력을 양성하는 데 힘쓰고 있으며, 2018년부터 삼성전자 산학협력센터장을 맡고 있다. 또 네이버 ‧ 인텔과 협력해 KAIST에 AI 공동연구센터(NIK AI Research Center)를 설립하는 등 AI 반도체 설계와 더불어 AI 클라우드, AI 데이터 센터 성능 최적화를 목표로 반도체 산업의 신생태계 구축에도 기여하고 있다. IEEE(국제전기전자공학자학회) 석학회원(Fellow)인 김 교수는 이와 같이 반도체 분야 연구와 교육을 통해 산업 발전에 기여한 공로를 인정받아 KAIST 학술상, KAIST 연구대상, KAIST 국제협력상, IEEE 기술 업적상 등을 수상했으며. IEEE 등 여러 국제학회에서 20여 차례에 걸쳐 '최고 논문상‘을 받는 등 학술적인 면에서도 큰 성과를 거두고 있다. ‘강대원 상’은 한국반도체학술대회 상임운영위원회가 세계적인 반도체 연구자인 고(故) 강대원 박사의 업적을 재조명하기 위해 지난 2017년, 처음 제정한 상이다. 강 박사는 미국 벨연구소에 입사해 1960년 이집트 출신 아탈라 박사와 트랜지스터 모스펫(MOS-FET)을 개발, 현대 반도체 기술의 핵심 토대를 마련했다. 또 플래시메모리 근간인 플로팅게이트를 세계 최초로 개발하기도 했다. 한편 한국반도체산업협회와 한국반도체연구조합, DB하이텍이 12~14일 강원도 하이원그랜드호텔에서 개최하는 32회 한국반도체학술대회에는 삼성전자·SK하이닉스·DB하이텍 등 반도체 기업을 포함해 국내 4,200명 이상의 반도체 분야 산·학·연 전문가와 학생이 참석해 역대 최대 규모인 1,659편 논문을 발표하는 등 연구 성과를 공유한다.
2025.02.12
조회수 1340
감정노동 근로자 정신건강 살피는 AI 나왔다
감정노동이 필수적인 직무를 수행하는 상담원, 은행원 근로자들은 실제로 느끼는 감정과는 다른 감정을 표현해야 하는 상황에 자주 놓이게 된다. 이런 감정적 작업 부하에 장시간 노출되면 심각한 정신적, 심리적 문제뿐만 아니라 심혈관계 및 소화기계 질환 등 신체적 질병으로도 이어질 수 있어 이는 심각한 사회 문제로 여겨지고 있다. 한미 공동 연구진은 인공지능을 활용해서 근로자의 감정적 작업 부하를 자동으로 측정하고 실시간으로 모니터링할 수 있는 새로운 방법을 제시했다. 우리 대학 전산학부 이의진 교수 연구팀은 중앙대학교 박은지 교수팀, 미국 애크런 대학교의 감정노동 분야 세계적인 석학인 제임스 디펜도프 교수팀과 다학제 연구팀을 구성해 근로자들의 감정적 작업 부하를 실시간으로 추정해 심각한 정신적, 신체적 질병을 예방할 수 있는 인공지능 모델을 개발했다고 11일 밝혔다. 연구팀은 이번 연구를 통해 근로자가 감정적 작업 부하가 높은 상황과 그렇지 않은 상황을 87%의 정확도로 구분해 내는데 성공했다. 이 시스템은 기존의 설문이나 인터뷰 같은 주관적인 자기 보고 방식에 의존하지 않고도 감정적 작업 부하를 실시간으로 평가할 수 있어 근로자들의 정신건강 문제를 사전에 예방하고 효과적으로 관리할 수 있다는 장점이 있다. 또한, 이 시스템은 콜센터뿐만 아니라 고객 응대가 필요한 다양한 직종에 적용될 수 있어 감정 노동자들의 장기적인 정신건강 보호에 크게 기여할 것으로 기대된다. 기존 연구는 주로 사무실에서 컴퓨터를 사용해 서류 업무를 주로 다루는 직장인의 인지적 작업 부하(정보를 처리하고 의사결정을 내리는 데 필요한 정신적 노력)를 다뤘으며, 고객을 상대하는 감정 노동자들의 작업 부하를 추정하는 연구는 전무한 상황이었다. 감정 노동자들의 감정적 작업 부하는 고용주로부터 요구되는 정서 표현 규칙과 관련이 깊다. 특히 감정노동이 요구되는 상황에서는 자신의 실제 감정을 억제하고 친절한 응대를 해야 하기 때문에 대체적으로 근로자의 감정이나 심리적 상태가 표면적으로 드러나 있지 않다. 기존의 감정-탐지 인공지능 모델들은 주로 인간의 감정이 표정이나 목소리에 명백하게 드러나는 데이터를 활용해 모델을 학습해왔기 때문에 자신의 감정을 억제하고 친절한 응대를 강요받는 감정 노동자들의 내적인 감정적 작업 부하를 측정하는 것은 어려운 일로 여겨져 왔다. 모델 개발을 위해서는 현실을 충실히 반영한 고품질의 상담 시나리오 데이터셋 구축이 필수적어서 연구팀은 현업에 종사 중인 감정 노동자들을 대상으로 고객상담 데이터셋을 구축했다. 일반적인 콜센터 고객을 응대 시나리오를 개발하여 31명의 상담사로부터 음성, 행동, 생체신호 등 다중 모달 센서 데이터를 수집했다. 연구팀은 인공지능 모델 개발을 위해 고객과 상담사의 음성 데이터로부터 총 176개의 음성특징을 추출했다. 음성 신호 처리를 통해서 시간, 주파수, 음조 등 다양한 종류의 음성특징이 추출하며, 대화 내용은 고객의 개인정보 보호를 위하여 사용하지 않았다. 정서 표현 규칙으로 인한 상담사의 억제된 감정 상태를 추정하기 위하여 상담사로부터 수집된 생체신호로부터 추가적인 특징을 추출했다. 피부의 전기적 특성을 나타내는 피부 전도도(EDA, Electrodermal activity) 13개의 특징, 뇌의 전기적 활성도를 측정하는 뇌파(EEG, Electroencephalogram) 20개의 특징, 심전도(ECG, Electrocardiogram) 7개의 특징, 그 외 몸의 움직임, 체온 데이터로부터 12개의 특징을 추출했다. 총 228개의 특징을 추출해 9종의 인공지능 모델을 학습하여 성능 비교 평가를 수행했다. 결과적으로, 학습된 모델은 상담사가 감정적 작업 부하가 높은 상황과 그렇지 않은 상황을 87%의 정확도로 구분해 냈다. 흥미로운 점은 기존 감정-탐지 모델에서 대상의 목소리가 성능 향상에 기여하는 주요한 요인이었지만 본인의 감정을 억누르고 친절함을 유지해야 하는 감정노동의 상황에서는 상담사의 목소리가 포함될 경우 오히려 모델의 성능이 떨어지는 현상을 보였다는 것이다. 그 외에 고객의 목소리, 상담사의 피부 전도도 및 체온이 모델 성능 향상에 중요한 영향을 미치는 특징으로 밝혀졌다. 이의진 교수는 "감정적 작업 부하를 실시간으로 측정할 수 있는 기술을 통해 감정노동의 직무 환경 개선과 정신건강을 보호할 수 있다”며 "개발된 기술을 감정 노동자의 정신건강을 관리할 수 있는 모바일 앱과 연계하여 실증할 예정이다”고 말했다. 중앙대학교 박은지 교수(KAIST 전산학부 박사 졸업)가 제1 저자이며 유비쿼터스 컴퓨팅 분야 국제 최우수 학술지인 「Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies」 2024년 9월호에 게재됐다. 또한, 이 연구는 인간-컴퓨터 상호작용 분야의 최우수 학술대회인 ACM UbiComp 2024에서 발표됐다. (논문제목: Hide-and-seek: Detecting Workers’ Emotional Workload in Emotional Labor Contexts Using Multimodal Sensing, https://doi.org/10.1145/3678593) 이번 연구는 과학기술정보통신부 정보통신기획평가원 ICT융합산업혁신기술개발사업의 지원을 받아 수행됐다.
2025.02.11
조회수 2249
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 19