-
제7회 연구실 안전의 날, 건설및환경공학과 우수학과 선정
우리 대학은 5월 13일‘제7회 KAIST 연구실 안전의 날’을 맞아 건설및환경공학과를 연구실 안전관리 우수학과로 선정했다.
연구실 안전관리 우수학과 포상은 연구실 안전교육 이수율, 일상점검 실시율, 학과안전관리위원회 개최 등 주요 지표를 종합적으로 평가하여, 우수한 실적을 보인 학과에 수여된다. 올해 수상한 건설및환경공학과는 연구실 안전교육 이수율과 정기점검 후속조치율 등에서 높은 평가를 받아 우수학과로 선정되었다.
이날 기념식에서는 최근 개최된 ‘KAIST 안전디자인 공모전’의 당선작에 대한 시상도 진행되었다.
연구실 안전 분야에서는 생명과학과행정팀 임승영 기술원이, 교통안전 분야에서는 산업디자인학과 김민수 학사과정생이, 소방안전 분야에서 산업디자인학과 강은주 석사과정생이 각각 최우수상을 수상하였다.
이균민 교학부총장은 “한 사람 한 사람의 관심과 실천이 쌓여 우리 KAIST의 연구실이 더 안전해지고 연구에 몰입할 수 있는 환경이 만들어지기를 바란다”라고 전했다.
한편, KAIST 연구실 안전의 날은 2003년 5월 13일에 발생한 풍동 실험실 사고를 기억하고, 연구실 안전에 대한 구성원의 공감대 형성과 안전의식 제고를 위해 2013년 5월 13일에 처음 제정되어 기념되고 있다.
2025.05.13
조회수 179
-
미생물로 친환경 나일론 유사 플라스틱 개발 성공
폴리에스터 아마이드는 일반적으로 많이 사용되는 플라스틱인 PET(폴리에스터)와 나일론(폴리아마이드)의 장점을 모두 갖춘 차세대 소재다. 하지만 지금까지는 화석 연료에서만 생산할 수 있어 환경오염 문제를 피할 수 없었다. 우리 연구진이 플라스틱을 대체할 미생물을 이용한 신규 바이오 기반 플라스틱을 개발하는데 성공했다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용하여 미생물 균주를 개발하고 여러 가지 신규 유형의 친환경 바이오 플라스틱인 폴리에스터 아마이드를 생산하여, 한국화학연구원(원장 이영국) 연구진과 공동 분석을 통해 생산된 이 플라스틱의 물성 확인까지 성공했다고 20일 밝혔다.
이상엽 특훈교수 연구팀은 자연계에 존재하지 않는 새로운 미생물 대사회로를 설계해 폴리(3-하이드록시뷰티레이트-ran-3-아미노프로피오네이트), 폴리(3-하이드록시뷰티레이트-ran-4-아미노뷰티레이트) 등을 포함한 9종의 다른 폴리에스터 아마이드를 생산할 수 있는 플랫폼 미생물 균주를 개발했다.
폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 원료로 사용해 폴리에스터 아마이드를 친환경적으로 생산할 수 있도록 했다. 또한 연구팀은 해단 균주의 유가 배양식 발효 공정을 이용해 고효율 생산 (54.57 g/L)을 보임으로써 추후 산업화될 가능성도 확인했다.
우리 연구진은 한국화학연구원 정해민, 신지훈 연구원과 함께 바이오 기반 플라스틱의 물성을 분석한 결과, 기존의 고밀도 폴리에틸렌(HDPE)과 유사한 성질을 갖고 있는 것으로 나타났다. 즉, 친환경적이면서도 기존 플라스틱을 대체할 수 있을 만큼 강도와 내구성이 뛰어나다는 것을 확인했다.
이번 연구에서 개발된 균주 및 전략들은 여러 가지 폴리에스터 아마이드 뿐만 아니라 다른 그룹의 여러가지 고분자들을 생산하는 대사회로들을 구축하는데 유용하게 쓰일 것으로 예상된다.
이상엽 특훈교수는 “이번 연구는 석유화학 산업 기반에 의존하지 않고도 폴리에스터 아마이드(플라스틱)을 재생가능한 바이오기반 화학산업을 통해 만들수 있는 가능성을 세계 최초로 제시한 것으로 앞으로 생산량과 생산성을 더욱 높이는 연구를 이어갈 계획”이라 말했다.
해당 연구 결과는 국제 학술지인 `네이쳐 케미컬 바이올로지(Nature Chemical Biology)'에 3월 17일자로 온라인 게재됐다.
※ 논문명 : Biosynthesis of poly(ester amide)s in engineered Escherichia coli, DOI:10.1038/s41589-025-01842-2)
※ 저자 정보 : 채동언(KAIST, 제1저자), 최소영(KAIST, 제2저자), 안다희(KAIST, 제3저자), 장우대(KAIST, 제4저자), 정해민(한국화학연구원, 제5저자), 신지훈(한국화학연구원, 제6저자), 이상엽(KAIST, 교신저자) 포함 총 7명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2025.03.20
조회수 2908
-
수소 경제 핵심, 세계 최고 수준 암모니아 촉매 개발
신재생 에너지를 이용한 수소 생산은 친환경 에너지 및 화학물질 생산의 핵심적인 기술이다. 하지만 이렇게 생산된 수소는 저장과 운송이 어렵기 때문에 탄소 배출이 없고, 액화가 쉬운 암모니아(NH3) 형태로 수소를 저장하려는 연구가 세계적으로 널리 진행되고 있다. 우리 연구진은 매우 낮은 온도와 압력에서도 에너지 손실 없이 암모니아를 합성할 수 있는 고성능 촉매를 개발했다.
우리 대학 생명화학공학과 최민기 교수 연구팀이 에너지 소비와 이산화탄소 배출량을 크게 줄이면서도 암모니아 생산성을 획기적으로 높일 수 있는 혁신적인 촉매 시스템을 개발했다고 11일 밝혔다.
현재 암모니아는 철(Fe) 기반 촉매를 이용해 하버-보슈 공정이라는 100년이 넘은 기술로 생산되고 있다. 하지만, 이 방식은 500℃ 이상의 고온과 100기압 이상의 고압이 필요해 엄청난 에너지를 소비하고, 세계 이산화탄소 배출량에서 상당한 비율을 차지하는 주범으로 지목됐다. 더구나 이렇게 생산된 암모니아는 대규모 공장에서 제조되기 때문에 유통 비용도 만만치 않다.
이에 대한 대안으로, 최근 물을 전기로 분해하는 기술인 수전해를 통해 생산된 그린 수소를 이용해 저온·저압(300도, 10기압)에서 암모니아를 합성하는 친환경 공정에 관한 관심이 급증하고 있다. 그러나 이러한 공정을 구현하려면 낮은 온도와 압력에서도 높은 암모니아 생산성을 확보할 수 있는 촉매 개발이 필수적이며, 현재의 기술로는 이 조건에서 암모니아 생산성이 낮아 이를 극복하는 것이 핵심 과제로 남아 있다.
연구팀은 루테늄(Ru) 촉매와 강한 염기성을 갖는 산화바륨(BaO) 입자를 전도성이 뛰어난 탄소 표면에 도입해 마치 ‘화학 축전지(chemical capacitor)*’처럼 작동하는 신개념 촉매를 개발했다.
*축전지: 전기 에너지를 +전하와 –전하로 나누어 저장하는 장치
암모니아 합성 반응 도중 수소 분자(H2)는 루테늄 촉매 위에서 수소 원자(H)로 분해 되며, 이 수소 원자는 양성자(H+)와 전자(e-) 쌍으로 한번 더 분해되게 된다. 산성을 띠는 양성자는 강한 염기성을 띠는 산화바륨에 저장되고 남은 전자는 루테늄과 탄소에 분리 저장되는 것으로 밝혀졌다.
이처럼 특이한 화학 축전 현상을 통해 전자가 풍부해진 루테늄 촉매는 암모니아 합성 반응의 핵심인 질소(N2) 분자의 분해 과정을 촉진해 촉매 활성을 비약적으로 증진시키는 것으로 밝혀졌다.
특히 이번 연구에서는 탄소의 나노구조를 조절함으로써 루테늄의 전자 밀도를 극대화해 촉매 활성을 증진시킬 수 있음을 발견했다. 이 촉매는 300도, 10기압인 온건한 조건에서 기존 최고 수준의 촉매와 비교하여 7배 이상 높은 암모니아 합성 성능을 나타냈다.
최민기 교수는 “이번 연구는 전기화학이 아닌 일반적인 열화학적 촉매 반응 과정에서도 촉매 내부의 전자 이동을 조절하면 촉매 활성을 크게 향상할 수 있음을 보여준 점에서 학계의 큰 주목을 받고 있다”고 밝혔다.
이어 “동시에 이번 연구를 통해 고성능 촉매를 활용하면 저온·저압 조건에서도 효율적인 암모니아 합성이 가능함이 확인되었다. 이를 통해 기존의 대규모 공장 중심 생산 방식에서 벗어나 분산형 소규모 암모니아 생산이 가능해지며, 친환경 수소 경제 시스템에 적합한 더욱 유연한 암모니아 생산·활용이 가능해질 것으로 기대된다.”라고 설명했다.
생명화학공학과 최민기 교수가 교신저자, 백예준 박사과정 학생이 제 1 저자로 연구에 참여하였으며, 연구 결과는 촉매 화학 분야에서 권위적인 국제 학술지인 ‘네이처 카탈리시스(Nature Catalysis)’에 지난 2월 24일 게재됐다.
(논문명 : Electron and proton storage on separate Ru and BaO domains mediated by conductive low-work-function carbon to accelerate ammonia synthesis, https://doi.org/10.1038/s41929-025-01302-z)
한편, 이 연구는 한국에너지기술연구원과 한국연구재단의 지원을 받아 수행되었다.
2025.03.11
조회수 2497
-
KAIST, 조선시대 ‘일월오봉도’ 색소없이 완벽 구현하다
일반적으로 색깔을 표현하기 위해서는 가시광선 내의 특정 파장의 빛을 흡수하는 화학 색소가 필요하다. 그런데 우리 연구진이 화학 색소를 사용하지 않아 친환경적이며, 변색이나 퇴색 없이 컬러 그래픽을 영구 보존할 수 있는 초정밀 컬러 그래픽으로 조선시대 ‘일월오봉도’를 구현하는데 성공했다.
우리 대학 생명화학공학과 김신현 교수 연구팀이 반구 형태의 미세구조를 이용해 화학 색소를 전혀 사용하지 않고 고해상도의 컬러 그래픽을 구현하는 기술을 개발했다고 26일 밝혔다.
영롱한 파란색을 띄는 몰포 나비나 피부색을 바꾸는 팬서 카멜레온은 화학 색소 없이도 발색하는데, 이는 물질을 이루는 규칙적인 나노구조가 빛의 간섭 현상을 통해 가시광선의 빛을 반사해 나타나는 구조색이다. 구조색은 물질이 아니라 구조에 따라 색깔이 달라지기 때문에 한가지 소재로도 다양한 색깔을 나타낼 수 있다.
그러나 구조색 발색을 위한 규칙적인 나노구조는 인공적으로 구현하기 위한 기술적 난이도가 높고, 다양한 색 표현이 어려울 뿐만 아니라 다양한 색을 정교하게 패턴으로 나타내기 매우 어렵다.
김신현 교수 연구팀은 규칙적인 나노구조 대신 부드러운 표면을 갖는 반구 형태의 미세구조만을 이용해 다양한 구조색을 높은 정밀도로 패턴화할 수 있는 새로운 기술을 개발했다.
뒤집어진 반구 형태의 미세 구조체에 빛이 입사할 때 측면으로 입사한 빛은 곡면을 따라 전반사돼 재귀반사가 일어나게 된다. 이때 반구의 직경이 10마이크로미터 내외(머리카락 굵기의 10분의 1 수준) 일때 재귀반사가 일어나는 서로 다른 경로의 빛이 가시광선 영역에서 간섭해 구조색이 나타난다.
구조색은 반구의 크기에 따라 조절 가능하며, 팔레트에서 물감을 섞듯 서로 다른 크기의 반구를 배열함으로써 발현 가능한 색을 무한히 늘릴 수 있다.
연구팀은 다양한 크기의 반구형 미세구조를 정밀하게 패턴화하기 위해 반도체 공정에 사용되는 양성 감광성 고분자*를 광식각법**을 통해 미세기둥 형태로 패턴화한 다음 온도를 올려 감광성 고분자의 리플로우***를 유도함으로써 반구형 미세구조를 형성했다.
*양성 감광성 고분자((positive photoresist): 자외선에 노출된 영역이 현상액에 쉽게 용해되는 감광성 재료
**광식각법(photolithography): 반도체 공정에서 주로 사용되는 패턴 형성법
***리플로우(reflow): 고온에서 고분자 구조 내에 흐름이 발생하여 형상이 곡면 형태로 변하는 현상
이러한 방식을 이용하면 원하는 크기와 색깔을 갖는 반구형 미세구조를 원하는 위치에 미리 설계한 방식대로 단일 단계에 형성할 수 있으며, 임의의 컬러 그래픽을 색소 없이 단일 물질만을 이용해 재현해 낼 수 있다.
색의 영구 보존이 가능한 초정밀 컬러 그래픽 기술은 빛의 입사 각도나 시야 각도에 따라 변색이 가능하며, 패턴의 한쪽 방향으로만 색깔을 보이며, 반대편으로는 투명한 야누스 형태의 특징을 갖는다. 이러한 구조색 그래픽은 최신 LED 디스플레이에 준하는 높은 해상도를 가지며 손톱 크기에 복잡한 컬러 그래픽을 담을 수 있고, 이를 대면적 스크린에 프로젝션도 가능하다.
연구를 주도한 김신현 교수는 “새롭게 개발한 무색소 컬러 그래픽 구현 기술이 향후 예술과 접목해 새로운 형태의 예술 작품을 표현하는 참신한 방법이 될 수 있으며 광학 소자 및 센서, 위변조 방지 소재, 심미성 포토카드 등을 포함한 광범위한 분야에 적용할 수 있을 것으로 기대된다”고 말했다.
우리 대학 손채림 석사가 제1 저자로 참여한 이번 연구 결과는 재료 분야의 권위있는 국제학술지‘어드밴스드 머터리얼즈(Advanced Materials)’ 2월 5일 자에 게재됐다. (논문명: Retroreflective Multichrome Microdome Arrays created by Single-Step Reflow, 단일 단계 리플로우 공정을 이용한 재귀반사형 다색 미세돔 배열 설계, DOI:10.1002/adma.202413143)
이번 연구는 한국연구재단의 미래융합파이오니어사업 및 중견연구자지원사업의 지원을 받아 수행됐다.
2025.02.26
조회수 2486
-
친환경 발광 소재로 생생한 화면 즐긴다
현실과 가상이 융합된 메타버스 시대를 생생하고 현실감 있게 표현하기 위해 디스플레이와 광학 기기 기술이 더욱 빠르게 발전하고 있다. 하지만 차세대 발광 물질로 주목받으며 청색광 구현이 가능한 납 기반 페로브스카이트는 납 이온의 유독성으로 인해 산업적 응용이 제한되고 있다. 이에, 우리 연구진이 청색광 구현이 가능한 친환경 대체 소재를 개발해서 화제다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 납 이온이 없이도 우수한 색 표현력과 높은 발광 효율을 가질 수 있는 친환경 대체 소재를 개발하였다고 13일 밝혔다.
연구팀은 이번 연구에서 유로퓸 이온(Eu2+)*으로 페로브스카이트의 납 이온을 대체함으로써 우수한 색 표현력과 높은 발광 효율을 동시에 가지는 발광 소재를 개발할 수 있음을 보였다.
*유로퓸 이온: 원자 번호 63번인 희토류 금속 유로퓸(Eu)의 이온 형태. 주로 전자를 2개 또는 3개 잃은 양이온(Eu2+ 또는 Eu3+)으로 존재함
개발된 세슘 유로퓸 브로마이드(CsEuBr3) 페로브스카이트 나노결정은 420-450 나노미터(nm) 파장 영역에서의 진청색 발광 특성을 보였으며, 약 40%의 높은 발광 효율과 24 nm의 매우 좁은 발광 스펙트럼 반치폭*을 보였다.
*반치폭: 스펙트럼의 최대값 절반 높이에서의 두 점 사이의 거리로, 발광 색상의 선명도(색순도)를 평가하는 지표
광원의 발광 스펙트럼이 좁을수록 디스플레이에서 선명한 색 표현이 가능하기 때문에, 이는 차세대 디스플레이 소재로서의 높은 가능성을 보여준 결과라고 할 수 있다.
또한, 연구팀은 유로퓸 기반 나노결정의 구조적, 광학적 특성이 합성 과정에서 사용된 유기 리간드(암모늄 계열, 포스핀 계열)*에 따라서 크게 바뀌는 현상을 처음으로 규명하였다.
*유기 리간드: 나노결정의 표면에 붙어 계면활성제 역할을 하는 물질. 암모늄, 포스핀 계열 리간드는 각각 질소, 인 원자를 중심으로 구성됨
구체적으로, 세슘 유로퓸 브로마이드 페로브스카이트 나노결정은 합성 초기에 형성된 세슘 브로마이드(CsBr) 나노결정에 유로퓸 이온이 점진적으로 도입되면서 형성된다. 이 과정에서 사용된 리간드에 따라 결정 형성의 경로가 달라지며, 이 경로 차이에 의해 최종적으로 합성된 세슘 유로퓸 브로마이드 페로브스카이트 나노결정의 발광 효율이 크게 향상될 수 있음을 확인하였다.
신소재공학과 조힘찬 교수는 “이번 연구는 그동안 어려웠던 친환경 비납계 페로브스카이트 소재 연구의 돌파구를 제시하는 결과”라며 “차세대 디스플레이 및 광학 소자 개발의 새로운 지평을 열 수 있을 것으로 기대되며, 향후 연구를 통해 소재의 광학적 특성과 공정성을 더욱 향상시킬 계획”이라고 전했다.
연구팀의 하재영 박사과정, 연성범 석박사통합과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노 (ACS Nano)’에 10월 17일 온라인 게재됐으며, 11월 호 부록 표지(Supplementary Cover)로 출판될 예정이다.
(논문명: Revealing the Role of Organic Ligands in Deep-Blue-Emitting Colloidal Europium Bromide Perovskite Nanocrystals).
이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2024.11.13
조회수 2880
-
페트병 대체할 미생물 플라스틱 생산 성공하다
현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다.
우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다.
유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다.
*단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함
이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테리움에서 2-피론-4,6-다이카복실산과 4종의 피리딘 다이카복실산 (2,3-, 2,4-, 2,5-, 2,6-피리딘 다이카복실산)을 포함한 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 미생물 균주를 개발했다.
연구팀은 대사공학 기법을 통해 여러 유사 방향족 다이카복실산의 전구체로 사용되는 프로토카테츄산의 대사 흐름을 강화하고 전구체의 손실을 방지하는 플랫폼 미생물 균주를 구축했다.
이를 기반으로 전사체 분석을 통해 유전자 조작 타겟을 발굴해 76.17g/L의 2-피론-4,6-다이카복실산을 생산하였고, 3종의 피리딘 다이카복실산 생산 대사회로를 신규 발굴 및 구축하여 2.79g/L의 2,3-피리딘 다이카복실산, 0.49g/L의 2,4-피리딘 다이카복실산, 1.42g/L의 2,5-피리딘 다이카복실산을 생산하는 데 성공했다.
또한, 연구팀은 2,6-피리딘 다이카복실산 생합성 경로 구축 및 강화를 통해 15.01g/L의 생산을 확인하며 총 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 데 성공했다.
결론적으로, 2,4-, 2,5-, 2,6-피리딘 다이카복실산을 세계 최고 농도로 생산하는 데 성공하였다. 특히 2,4-, 2,5-피리딘 다이카복실산은 기존에 극미량 (mg/L) 생산되던 것을 g/L 규모의 생산까지 달성하였다.
이번 연구를 기반으로 다양한 폴리에스터 생산 산업공정으로의 응용이 기대되며, 유사 방향족 폴리에스터 생산에 관한 연구에도 적극 활용될 수 있으리라 기대된다.
교신저자인 이상엽 특훈교수는 “미생물을 기반으로 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 연구가 앞으로 미생물 기반의 바이오 단량체 산업이 석유 화학 기반의 화학산업을 대체하는 데 일조할 것”이라고 밝혔다.
해당 연구 결과는 국제 학술지인 `미국 국립과학원 회보(PNAS)'에 10월 30일 자 게재됐다.
※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids
※ 저자 정보 : 조재성(한국과학기술원, 공동 제1저자), 찌웨이 루오(한국과학기술원, 공동 제1저자), 문천우(한국과학기술원, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.11.07
조회수 4394
-
기존보다 26배 효과적인 폐질환 흡입치료 가능
코로나19의 전 세계적 유행 이후, 폐 등 호흡기 질병에 대비하기 위한 mRNA 백신 및 치료제는 차세대 치료제로 주목받고 있다. 하지만 기존 mRNA 백신용 전달체가 가지고 있는 한계점을 극복하고 우리 대학 연구진이 호흡기 바이러스 및 난치성 폐질환의 mRNA 흡입 치료를 가능케 하며 유전자 폐 치료 연구의 근간이 될 연구에 성공했다.
우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 유전자 폐 치료에 최적화된 나노 전달체를 개발했다고 7일 밝혔다.
연구팀은 기존 mRNA 전달을 위해 활용되던 지질나노입자(이하 lipid nanoparticle, LNP)의 에어로졸화 과정에서의 불안정성과 폐 미세환경에서의 낮은 전달 효율을 해결하기 위해 이온화성 지질나노복합체(ionizable lipocomplex, iLPX)를 개발했다.
iLPX는 이온화성 리포좀의 외부에 mRNA를 결합한 형태로, 에어로졸화 과정에서 입자의 구조를 유지하기 때문에 흡입 전달에 용이하다. 또한, 폐 미세환경 내에서 폐계면활성제와의 상호작용을 유도해 호흡 운동을 활용, mRNA를 높은 효율로 폐 세포 내로 전달할 수 있다.
흡입 전달 및 폐 미세환경을 고려한 모방 환경 및 마우스 폐에서의 단백질 발현을 토대로 한 다차원 선별 과정을 통해 iLPX의 구성 요소들을 최적화시킴으로써 흡입용 mRNA 전달체(Inhalation optimized-iLPX, 이하 IH-iLPX)를 완성했다.
연구팀은 에어로졸화 전후의 입자 크기, 균일도, mRNA 탑재율을 비교함으로써 IH-iLPX의 월등한 에어로졸화 안정성을 증명했다. 나아가, IH-iLPX를 전달한 마우스에서 LNP 전달 마우스보다 26배 높은 단백질 발현이 유도됨을 확인했다.
연구팀은 동물 모델에서 흡입 전달된 IH-iLPX가 폐 특이적으로 단백질을 발현시키며, 폐포 상피세포와 기관지 상피세포에서 mRNA를 효과적으로 전달함을 확인했다. 또한 혈액 생화학 분석과 조직 검사를 토대로 IH-iLPX가 폐와 혈액 환경에서 독성이 없음을 확인했기 때문에 효과적인 폐내 mRNA 발현뿐만 아니라 생체 안전성 측면에서 큰 의의를 갖는다고 밝혔다.
박 교수는 “mRNA를 반드시 내부에 탑재해야 한다는 고정 관념을 깨고 새로운 구성의 입자를 제시함으로써 기존에 불가능했던 흡입형 유전자 치료의 길을 열었다”며 “본 연구실에서 개발한 흡입형 유전자 전달체는 치료 단백질을 암호화하는 mRNA를 탑재해 폐질환에 적용되어 유전자 폐 치료의 적용 범위를 넓힐 것으로 기대된다”이라고 말했다.
바이오및뇌공학과 장민철 박사과정이 제1 저자로 참여한 이번 연구 결과는 나노기술 분야 국제학술지 ‘ACS 나노(Nano)’ 9월 3일 자 18권 35호에 게재됐다. (논문명: Inhalable mRNA Nanoparticle with Enhanced Nebulization Stability and Pulmonary Microenvironment Infilration)
이번 연구는 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2024.10.10
조회수 4140
-
이제 전자제품도 완전히 생분해될 수 있다
전자폐기물이 발생하지 않는 안전한 전자제품을 구현할 수 있을까?
국제공동연구진은 갑오징어에서 추출한 미래 전자 소재로 주목받는 세피아 멜라닌으로 만든 친환경 필름이 85일 만에 약 97% 생분해됨을 밝혀 지속가능한 친환경 전자제품의 새로운 가능성을 열어 화제다.
우리 대학 건설및환경공학과 명재욱 교수 연구팀이 몬트리올 공과대학 클라라 산타토(Clara Santato) 교수 연구팀과 국제 공동연구를 통해 완전히 생분해되는 세피아 멜라닌 기반 전기 활성 필름을 개발했다고 25일 밝혔다.
해마다 전자제품에 대한 수요가 급격하게 증가함에 따라 매년 약 6천만 톤에 이르는 전자폐기물이 발생하고 있다. 전자폐기물은 자연에서 쉽게 분해되지 않고 납(Pb), 카드뮴(Cd)과 같은 중금속이나 폴리염화비닐(PCB) 등 유해 화학물질을 자연에 유출해 생태계를 오염시킬 수 있다.
한편 생분해성 *유기전자소재는 기존 전자제품에 대한 패러다임을 전환할 수 있는 새로운 소재로 떠오르고 있다. 특히 갑오징어에서 추출할 수 있는 세피아 멜라닌은 생분해성, 저독성으로 지속가능한 미래 전자 소재로 주목받고 있다.
*유기전자소재(organic electronic material): 멜라닌, 타닌, 이모딘, 리그닌, 도파민 등 화학 구조상 전자공액계(electron conjugation)를 특징으로 하는 물질들을 뜻한다.
연구팀은 완전한 분해가 가능한 전기 활성 필름을 구현하기 위해 천연 바이오 소재인 세피아 멜라닌-셸락 잉크 복합체를 플렉소그래피 인쇄 기술을 활용해 은 전극 패턴의 종이 위에 인쇄했다.
인쇄된 필름이 이산화탄소(CO2)로 전환되는 정도(광물화도)를 기반으로 퇴비화 조건에서 생분해 거동을 분석한 결과, 85일 만에 약 97% 생분해됨을 연구팀은 확인했다. 인쇄 필름은 육안으로 봤을 때 20일 이내에 완전히 분해됐으며, 주사전자 현미경 분석을 통해 박테리아가 인쇄 필름의 생분해에 관여하여 퇴비 미생물 군집이 표면에 형성됨을 관찰했다.
한편, 인쇄 필름의 생분해 산물이 생태독성을 띠는지 조사하기 위해 두 가지 식물 쥐보리(Lolium multiflorum)와 메리골드(Tagetes erecta)를 대상으로 발아 실험을 진행한 결과, 인쇄 필름과 그 개별 구성 성분(세피아 멜라닌, 셸락, 셀룰로오스 등)은 식물에 대한 독성이 미미한 것으로 나타났다.
전기적 특성을 분석한 결과 세피아 멜라닌-셸락 인쇄 필름은 10-4 S/cm의 전기전도도를 나타냈다. 해당 전기전도도는 일반 금속이나 고성능 전자 재료에 비해 낮지만, 생분해성 및 친환경 특성 덕분에 환경 센서, 생체 디바이스, 일회용 전자제품 등 특정 응용 분야에서 경쟁력 있는 대안이 될 수 있다.
이번 국제 공동 연구를 이끈 건설및환경공학과 명재욱 교수는 “세피아 멜라닌, 셸락과 같은 널리 쓰이지 않는 바이오 기반 물질을 활용해 완전히 생분해되는 전기활성 필름을 구현한 최초 사례이며, 후속 연구를 통해 지속가능한 전자 디바이스 구현을 위한 여러 대안을 제시할 계획”이라고 밝혔다.
건설및환경공학과 최신형 박사과정과 몬트리올 공과대학 앤써니 카뮈(Anthony Camus) 박사과정이 공동 제1 저자로 참여한 이번 연구는 지난 8월 29일 국제 학술지 Communications Materials에 출판됐다.
※ 논문명: Electrical response and biodegradation of Sepia melanin-shellac films printed on paper
(저자 정보 : Anthony Camus*, 최신형*(공동 제1 저자*), Camille Bour-Cardinal1(몬트리올 공과대), Joaquin Isasmendi(몬트리올 공과대학), 조용준(KAIST), 김영주(KAIST), Cristian Vlad Irimia(요한케플러대), Cigdem Yumusak(요한케플러대), Mihai Irimia-Vladu(요한케플러대), Denis Rho(캐나다국립연구위원회)**, 명재욱(KAIST)**, Clara Santato(몬트리올 공과대)** (공동 교신저자**), 총 12명)
한편, 이번 연구는 KAIST 공과대학 석·박사 모험연구 및 창의도전사업(C2연구), 한국연구재단 과학기술국제화사업-한국 이공계 대학원생 캐나다 연수 프로그램 사업 등의 지원으로 수행됐다.
2024.09.28
조회수 4155
-
간암 종양 미세환경에서 항암면역세포 억제 기전 규명
우리 대학 의과학대학원 정원일 교수 연구팀이 종양 관련 대식세포(Tumor-associated macrophage; TAM)와 간 성상세포(Hepatic stellate cell; HSC)의 대사성 상호작용을 통한 세포독성 CD8+ T세포의 증식 억제를 간암 병인 기전으로 규명하고 이를 새로운 간암 치료 표적으로 제시했다고 8일 밝혔다.
정원일 교수 연구팀은 대식세포 침윤에 중요한 역할을 하는 신호 전달 분자인 CX3CR1 케모카인을 발현하는 특정 종양 관련 대식세포가 섬유화로 진행된 암 주변 조직 내로 이동해 활성화된 간 성상세포와 상호작용함을 확인했다. 이때, 활성화된 간 성상세포에서 분비되는 레티노익산이 종양 관련 대식세포의 아르기나아제 1(Arginase-1, 이하 Arg1) 발현을 유도해 아르기닌의 대사를 촉진함으로 세포독성 CD8+ T세포의 증식이 억제되며 간암 발병이 촉진됨을 밝혔다.
특히, 간암 환자의 간 조직을 이용한 단일세포 유전체 분석에서 종양 미세환경 내 CX3CR1과 Arg1을 발현하는 특정 대식세포 군집을 발견하고, 해당 특성을 가진 대식세포들은 활성화된 간 성상세포와 근접해 있음을 확인했다. 특히 CX3CR1이 결손된 쥐에 발암물질(diethylnitrosamine, DEN)을 이용해 간암을 유발했을 때, 암 주변 조직으로 이주한 종양 관련 대식세포의 수가 감소하고 종양의 발생 또한 눈에 띄게 감소한 것을 연구팀은 확인했다.
암 발병 시 종양 미세환경 내에는 다양한 면역세포들이 존재하고 있고, 특히 세포독성 CD8+ T세포는 항암 면역반응을 일으켜 종양 발생을 억제한다. 그러나 CD8+ T세포의 증식에 필요한 아르기닌이 대식세포의 Arg1으로 인해 고갈되면 CD8+ T세포 군집 감소와 이에 따른 항암 면역반응 감소로 종양 발생이 유도된다. 이러한 대식세포의 Arg1 발현은 근접해 있는 간 성상세포 유래 레티노익산으로 유도되며, 쥐의 간 성상세포 내 레티놀 대사를 억제했을 시 간암이 호전된 것을 연구팀은 확인했다.
연구팀은 이번 연구를 통해 간암 종양 미세환경 내 면역세포와 비실질 세포인 간 성상세포의 상호작용 기전을 대사적 측면에서 최초로 밝히고, 이를 억제했을 시 간암이 호전됨을 통해 간암 치료의 새로운 전략으로 제시했다.
의과학대학원 정종민 박사와 최성은 박사과정이 공동 제1 저자로 참여한 이번 연구는 세계적인 국제 학술지 ‘간학 (Hepatology)’ 7월 19일 자 온라인판에 출판됐다. (논문명: CX3CR1+ macrophages interact with hepatic stellate cells to promote hepatocellular carcinoma through CD8+ T cell suppression)
한편 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단 리더연구 (2021R1A2C3004589) 및 바이오·의료기술개발사업(2022M3A9B6017654, RS-2023-00223831)의 지원으로 수행됐다.
2024.08.08
조회수 4317
-
손훈 건설및환경공학과 교수, 철도혁신연구원장 임명
우리 대학 손훈 건설및환경공학과 교수가 국가철도공단 산하 철도혁신연구원장으로 임명됐다.손 교수는 2004년부터 2006년까지 카네기맬론대학교 건설 환경공학과 조교수를 지냈으며, 2007년 우리 대학에 부임했다. 우리 대학 ICT 교량 연구단장과 글로벌전략연구소장 등을 역임했다.
우리 대학 교원으로서 철도혁신연구원에 겸직 예정인 손 원장의 임기는 이달 20일부터 2년이며, 연임시 1년 연장할 수 있다.
2024.05.24
조회수 3161
-
해양 속 82%까지 생분해되는 종이 포장재 개발
플라스틱으로 인한 자연환경 오염은 반드시 해결해야 할 전 지구적 난제로 꼽힌다. 특히, 패키징 소재(포장재)는 전체 플라스틱 소비의 30~50%를 차지하여 대체재로서의 생분해성 패키징 소재가 주목받고 있다. 가장 척박하다는 생분해 조건인 해양 속에서 미세플라스틱*을 남기지 않으면서도 높은 성능을 갖춘 생분해성 패키징 소재가 있을까?
*미세플라스틱: 5 mm 이하의 작은 플라스틱 조각으로, 플라스틱의 분해 과정에서 생성되며 바닷속과 해수면을 수십 년 이상 떠다니며 해양환경 오염을 일으키고 있음
우리 대학 건설및환경공학과 명재욱 교수, 생명과학과 양한슬 교수 및 연세대학교 패키징및물류학과 서종철 교수 공동 연구팀이 지속가능한 해양 생분해성 고성능 종이 코팅제를 개발했다고 17일 밝혔다.
일상에서 흔히 사용되는 종이 포장은 친환경 포장재로 인정받지만, 수분 저항성, 산소 차단성, 강도 등에서 매우 제한적인 면이 있다. 종이 포장재의 낮은 차단성을 향상하기 위해 폴리에틸렌(PE), 에틸렌비닐알코올(EVOH) 등이 코팅제로 활용되지만, 이런 물질들은 분해되지 않아 자연환경에 버려지면 플라스틱 오염을 심화시킨다.
이러한 문제에 대응하여 다수의 바이오 기반 물질, 생분해성 플라스틱* 등을 활용한 패키징 소재들이 개발되어 왔으나 패키징 성능이 향상될수록 생분해도가 급격하게 떨어지는 딜레마에 직면해왔다.
*생분해성 플라스틱: 난분해성 플라스틱의 대체재로, 토양, 해양 등 자연환경 또는 산업 퇴비화, 혐기소화 등 인공 조건에서 미생물에 의해 분해되는 고분자 화합물을 말함
연세대 연구팀은 생분해성 플라스틱인 폴리비닐알코올(polyvinyl alcohol)에 붕산(boric acid)을 이용해 고물성 필름을 제작하였으며, 이를 종이에 코팅하여 생분해성, 생체 적합성, 고차단성, 고강도를 갖는 패키징 소재를 구현하는데 성공하였다. 개발된 코팅 종이는 산소나 수증기에 우수한 차단성을 보이며 물리적 강도를 띄었다. 특히 다습한 환경에서도 높은 인장강도를 유지하여 종이의 단점을 획기적으로 극복하였다.
우리 대학 연구팀은 개발한 코팅 종이의 지속가능성을 평가하기 위해 생분해도와 생체적합성을 심층 검증하였다. 실험실에서 생분해가 일어나기 가장 어려운 환경인 해양환경을 모방하여 코팅지의 생분해도를 측정하였다. 물질의 탄소 성분이 이산화탄소로 광물화(mineralization)되는 정도를 111일 동안 분석한 결과 코팅 성분에 따라 59~82% 생분해됨을 밝혀내었다. 전자현미경을 통해 해양 미생물이 코팅 소재를 분해하고 있는 현상을 포착하였고 또한 코팅 소재의 낮은 신경독성을 확인하였고 쥐 생체 반응 실험을 통해 코팅 종이의 높은 생체적합성을 검증하였다.
건설및환경공학과 명재욱 교수는 이번 연구를 통해 “기존 종이 패키징의 한계를 극복하기 위해 지속가능성을 유지하면서도 패키징 성능을 향상시킬 수 있는 코팅 전략을 제시하였으며, 붕산 가교 폴리비닐알코올 코팅지는 인위적인 퇴비화 조건이나 하수처리 시설이 아닌 자연환경에서 생분해되며 저독성 물질이기 때문에 의도치 않게 버려지더라도 환경오염을 심화시키지 않아 잠재적으로 플라스틱 포장재의 지속가능한 대체재가 될 수 있다”고 밝혔다.
또한 "해양 생분해성 고성능 종이 코팅제의 개발은 각 분야에서 선도적인 세 연구팀의 혁신적인 기술이 결합된 결과물이다ˮ 라며 "앞으로도 환경친화적이고 성능이 뛰어난 소재 개발을 위해 노력할 것이다ˮ 라고 전했다.
한편, 고성능 종이 코팅 개발 연구를 주도한 연세대학교 서종철 교수는 “본 연구를 통해 난분해성 플라스틱 포장의 대체가 가능한 친환경 종이포장 기술을 개발하였으며 소재 디자인, 응용, 폐기 등 기초부터 응용 전과정의 체계적인 연구 결과를 기반으로 산업적 응용이 될 것으로 기대한다ˮ 라고 전했다.
이번 연구는 한국연구재단과 농림식품기술기획평가원 등의 지원으로 수행되었으며, 친환경 지속가능과학·기술 분야, 식품과학·기술 분야에서 권위 있는 학술지인 Green Chemistry, Food Chemistry 등에 각각 4월 17일, 2월 19일 온라인으로 출판됐다.
※ 논문명 (1): Boric acid-crosslinked poly(vinyl alcohol): biodegradable, biocompatible, robust, and high-barrier paper coating
(저자 정보 : 최신형(KAIST, 제1 저자), 유슬기(KAIST), 박기태(연세대), 김영주(KAIST), 조용준(KAIST), 박제희(KAIST), 서종철(연세대), 양한슬(KAIST), 명재욱(KAIST, 교신저자) 총 9명)
※ 논문명 (2): Effect of epichlorohydrin treatment on the coating process and performance of high-barrier paper packaging
(저자 정보 : 박기태(연세대, 제1 저자), 최신형(KAIST), Kambiz Sadeghi(연세대), Pradeep Kumar Panda(연세대), 명재욱(KAIST), 김도완(국립강릉원주대학교), 서종철(연세대, 교신저자) 총 7명)
2024.05.17
조회수 8270
-
KAIST, 대만 포모사그룹과 본격적인 협력 시작하다
우리 대학이 대만의 3대 기업 중 하나인 포모사그룹(Formosa Plastics Group)과 첨단바이오 및 친환경에너지 분야에서 협력을 추진한다.
이를 위해 이달 13일 포모사그룹 상무위원이자, 그룹 내 바이오 및 친환경에너지 분야를 이끄는 샌디 왕(王瑞瑜, Sandy Wang) 회장이 KAIST에 방문한다. 포모사그룹의 오너가 우리 대학을 공식 내방하는 것은 이번이 처음이다.
양 기관의 협력은 지난 3월 우리 대학이 포모사그룹이 설립하고 지원하는 명지과기대(明志科技大學), 장경대학교(長庚大學) 및 장경기념병원(長庚記念醫院) 등과 포괄적인 교류 협력에 관한 업무협약(MOU)를 맺으며 시작됐다.
이를 바탕으로 더욱더 구체적인 교류 협력을 추진하기 위해 우리 대학을 찾는 샌디왕 회장은 보직자를 위한 강의인 '매세월 서연'에서 '부친 왕융칭(王永慶) 회장의 자녀교육과 기업의 사회 환원 및 실천'을 주제로 리더십 특강을 진행한다. 이어, 첨단바이오 및 친환경에너지 등 대만의 미래산업과 관련된 KAIST의 연구와 기술을 참관한 뒤 글로벌 산학협력 방안을 논의한다. 향후 두 기관은 상호 겸임교수를 임명해 학생 공동지도 및 연구 협력 등, 실질적인 글로벌 협력을 추진한다는 계획이다. KAIST 차세대 ESS 연구센터와 배터리 응용 연구를 진행하고 장경대학-장경기념병원과 연계된 줄기세포 및 유전자편집기술 분야 특화 대학원 프로그램을 개설하는 등 실효적인 중장기 협력을 도모할 방침이다. 바이오 및 친환경에너지 관련 KAIST 우수 벤처기업을 대상으로 포모사 그룹의 투자와 협력도 추진해 대만과 한국 간 혁신 산업 협력의 발판을 마련할 예정이다.
이광형 총장은 "포모사 그룹은 세계적인 네트워크를 가지고 있어 KAIST의 바이오 및 공학 기술을 세계로 진출시키는 데 매우 중요한 파트너가 될 것으로 예상한다"라면서, "이번 샌디 왕 회장의 방문으로 세계 경제 대국으로 부상 중인 대만과 긴밀한 협력관계를 이어갈 수 있을 것으로 기대한다"라고 덧붙였다. 포모사 그룹은 샌디 왕 회장의 선친인 왕융칭(王永慶) 회장이 일군 회사다. 플라스틱 PVC 생산 세계 1위 기업으로 반도체, 철강, 중공업, 바이오,배터리에 이르기까지 대만경제의 핵심 산업을 주도하고 있다. 왕융칭 회장은 자신이 일군 기업과 재산은 '국민의 것'이라는 신념 아래 재산을 사회에 환원하는 모범을 보여 대만 국민에게 존경받았다. 우리 대학과 협력을 추진하는 장경대학, 장경기념병원 및 명지과기대 역시 왕융칭 회장이 추진한 사회공헌의 일환으로 설립돼 포모사그룹으로부터 재정을 지원받고 있다.
2024.05.09
조회수 5072