본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EC%96%91%EC%8A%B9%EB%A7%8C
최신순
조회순
햇빛 아래에서도 선명한 디스플레이 원천기술 개발
오팔(Opal) 보석은 색소가 없지만 우리 눈에는 다채로운 빛깔로 보인다. 표면의 규칙적인 나노 구조로 인해 특정 파장의 빛만이 반사되기 때문이다. 이처럼 나노 구조에 의해 빛의 선택적 반사가 일어나는 물질을 ‘광결정’이라고 한다. 우리학교 생명화학공학과 故 양승만 교수 연구팀은 광식각 공정을 이용해 차세대 광학소재로 주목받는 광결정의 상용화를 앞당길 수 있는 미세패턴 기술을 개발했다. 연구결과는 재료 분야의 세계적 권위지 ‘어드밴스드 머터리얼스(Advanced Materials)’ 지난달 16일자에 게재됐다. 이번에 개발된 광결정 미세패턴은 햇빛 아래에서도 선명하게 볼 수 있는 차세대 반사형 디스플레이의 핵심 소재로 사용될 전망이다. 별도의 광원을 사용하지 않기 때문에 한번 충전으로 수일 이상 사용할 수 있을 것으로 예상된다. 그동안 많은 과학자들이 광결정을 인공적으로 제조하기 위해 노력해 왔지만 대부분 덩어리 형태로 만들어 제작 효율성이 떨어졌다. 또 형성된 구조의 기계적 안정성이 낮아 상용화가 어려웠다. 연구팀은 오팔 보석이 갖고 있는 나노 구조를 모방했다. 연구팀은 자외선에 의해 광경화가 일어나는 물질 위에 오팔보석과 동일한 나노 구조로 유리구슬을 배열하고 고분자 물질 내부로 함침했다. 자외선을 미세영역에 선택적으로 노출한 다음 나머지 영역을 현상해내는 광식각 공정을 이용해 광결정을 미세한 패턴으로 제조하는데 성공했다. 이번 연구의 공동저자인 우리학교 생명화학공학과 김신현 교수는 “반도체 공정 기술을 광결정 패턴기술과 결합해 광결정의 실용화 기술 확보가 가능할 것”이라며 “향후 전력소모가 매우 낮은 차세대 반사형 컬러 디스플레이 소자를 구성하는 핵심 광학소재로 사용될 수 있을 것”이라고 연구의 의의를 밝혔다. 故 양승만 교수는 콜로이드 및 유체역학 분야의 세계적인 대가로 지난해 9월 불의의 의료사고로 고인이 되기 직전까지 연구를 진행해왔고 국제 저명학술지에 193편의 논문을 게재했다. 2007년에 듀폰 과학기술상, 2008년 올해의 KAIST인상, 2009년는 경암학술상을 수상한 바 있으며 고인이 된 후 2014년 3월 대통령 표창을 받았다. 연구진들은 고인을 기리며 이번 연구 결과를 故 양승만 교수에게 헌정했다. 그림1. 오팔보석과 오팔보석 내부의 나노 유리구슬 배열 구조 그림2. 광식각 기반의 광결정 미세패턴 형성 공정도 그림3. 서로 다른 두가지 색을 반사하는 광결정 미세패턴(Red, Green) 및 삼원색(Red, Green, Blue)을 반사하는 픽셀화된 광결정 패턴(반사형 디스플레이에 적용 가능한 구조)
2014.05.07
조회수 16190
양승만칼럼 빛의 반도체 광자결정
양승만 생명화학공학과 교수가 디지털타임스 2010년 7월 23일(금)자 칼럼을 실었다. 제목: 빛의 반도체 광자결정 신문: 디지털타임스 저자: 양승만 생명화학공학과 교수 일시: 2010년 7월 23일 (금) 기사보기: 빛의 반도체 광자결정
2010.07.23
조회수 10412
양승만 교수, 물위를 걷게 하는 스마트 나노구조 입자 제조
- 스스로 세정하는 초소수성 연꽃잎 구조를 생체모방한 최초의 나노입자 제조기술로 Nature와 Nature Nanotechnology에서 동시에 하이라이트 흙탕물 속에서도 아름답고 깨끗한 모습을 지키는 연꽃잎, 건조한 사막에서도 물 걱정 안 하는 딱정벌레, 영양분 공급 걱정 안 하는 끈끈이주걱, 물위를 자유자재로 걷는 소금쟁이, 물이 젖지 않는 나비날개는 모두 나노구조를 지니고 있어서 신기/한 생존현상을 만들어 낸다. KAIST 생명화학공학과 양승만 교수팀(광자유체집적소자 창의연구단)은 연꽃잎 나노구조를 표면에 갖고 있는 미세입자를 균일한 크기로 연속적으로 생산하여 다양한 응용분야에 적용할 수 있는 기술을 개발해 최근 Nature와 Nature Nanotechnology등 해외 저명학술지로부터 크게 주목 받는 연구성과를 거뒀다. 국제적으로 가장 권위 있는 두 학술지에 동시에 하이라이트로 실린 것은 극히 이례적인 일로, 이 연구결과가 나노과학의 진보성과 실용성이 크게 이바지한 것임을 입증한다. 양 교수팀의 이번 연구는 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’의 지원을 받아 수행했다. 연꽃잎 나노구조로 발생하는 소위 연꽃잎효과(Lotus Effect)의 응용분야는 무궁무진하여 세계적인 연구그룹들이 활발히 개발 중이나 현재의 기술수준은 연꽃잎 효과를 지니는 실용성 있는 제품을 개발하는 데는 성공하지 못하고 있다. Nature지(3월 25일호)와 Nature Nanotechnology지(4월호)가 비중 있게 하이라이트한 양 교수팀의 이번 연구에서는 감광성 액체방울을 이용하여 연꽃잎의 나노구조를 생체 모방하여 크기가 균일한 미세입자를 대량으로 만들 수 있는 기술을 성공적으로 개발하였다. 특히 주목할 것은 나노구슬이 스스로 구조를 형성하는 자기조립 원리를 이용함으로써 제조공정이 손쉽고 빨라 경제적이란 점이다(제조 공정도 참고). 우선 크기가 수백 나노미터인 균일한 유리구슬을 감광성 액체 속에 분산시킨 후, 크기가 수십 마이크로미터로 균일한 액체방울로 만들어 물에 주입하고, 물-감광성 액체-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬은 저절로 감광성 액체방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다. 이 때 자외선을 감광성 액체방울에 쪼여서 고형화 시킴으로써 수 천개의 유리 나노구슬이 박혀있는 입자를 얻게 된다. 그 후 유리구슬을 불산으로 녹여내면 마치 골프공 같이 분화구가 촘촘하게 파진 미세입자를 만들 수 있고 여기에 플라즈마(높은 에너지를 갖는 기체이온)를 쪼여주면 분화구가 깊게 깎이면서 연꽃잎과 같은 나노구조가 형성된다. 이러한 연꽃잎 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근에 나노식각공정을 사용하여 평판 위에 연꽃잎 효과를 구현한 결과는 보고된 바 있다. 그러나 본 연구의 결과는 머리카락 보다 가는 미세한 입자표면에 연꽃잎 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. Nature와 Nature Nanotechnology에서 언급한 바와 같이, 이렇게 제조된 연꽃잎 효과를 나타내는 미세입자의 응용은 다양하다. 세차가 필요없는 자동차, 김이 서리지 않는 유리, 비에 젖지 않는 섬유, 스스로 세정하는 페인트 그리고 비나 눈물에 얼룩이 지지 않는 화장품 등도 개발할 수 있다. 또한, 화학 및 바이오센서 등의 마이크로 분석소자, 물위를 걸을 수 있는 마이크로로봇, LCD 차세대 대형 디스플레이에서도 연꽃잎 효과를 이용한 코팅 기술이 사용될 것으로 기대된다. 이 연구결과는 화학분야 최고의 저명학술지인 안게반테 케미(Angewandte Chemie International Edition) 4월호 표지논문으로 하이라이트 되었고 연꽃잎 구조의 실용성을 구현하는데 크게 기여한다고 인정받아 그 호의 VIP(Very Important Paper: 매우 중요한 논문)로 선정되었다. 특히, Nature지는 3월 25일호에서 양 교수팀 연구의 중요성과 응용성에 주목하여 ‘표면과학: 물방울로 만든 구슬(Surface Science: Liquid Marbles)’이라는 제목으로 ‘뉴스와 논평(News & Views)’란에 하이라이트로 선정해 첨부한 자료와 같이 비중있게 게재했다. 또한, Nature Nanotechnology지는 4월호에서 ‘주목해야 할 연구(Research Highlights)’로 선정해 해설을 함께 실었다. <그림1> 연꽃잎의 나노구조를 생체모방한 미세입자제조 공정모식도 <그림2> 연꽃잎의 나노구조를 갖는 미세입자를 물표면에 뿌리면 막이 형성되고 이 막은 유리 막대를 찔러도 뚫리지 않고 유리막대에 물이 묻지 않는다. <그림3> Nature Nanotechnology에 실린 물 위에 뜬 물방울 사진: 연꽃잎 나노구조를 갖는 미세입자를 물표면에 뿌리면 막이 형성되고 이 막 위에 물을 뿌리면 방울로 맺히게 된다. 이것은 미세입자를 이용하면 물위로 물체를 띠울 수 있음을 보여준다. <그림4> Nature에 실린 물방울로 만든 구슬을 집게로 잡고 있는 모습: 연꽃잎 나노구조를 갖는 미세입자가 물을 포획하여 물방울 구슬을 만든 모습. 이 물방울구슬은 집게로 찌그러트려도 안 터지며 떨어뜨려도 깨지지 않는다. <그림5> 연꽃잎에 맺힌 물방울 사진과 나노구조의 전자현미경 사진과 봉우리의 모식도 <그림6> 사막의 딱정벌레와 나노구조의 전자현미경 사진 <그림7> 끈끈이 주걱과 나노구조의 전자현미경 사진
2010.03.24
조회수 25593
양승만 교수, 인조오팔로부터 초소형 분광분석기 제조
- Advanced Materials 3월 5일자 표지 논문으로 소개 돼 - 초정밀 극미량 물질 인식센서로 활용 오팔은 크기가 수백 나노미터(머리카락 굵기의 약 100 분의 1정도)의 유리구슬이 차곡차곡 쌓여 있는 것으로서, 그것이 아름다운 색을 띄는 것은 오팔이 선택적으로 반사하는 파장영역대의 빛만을 우리가 볼 수 있기 때문이다. 이렇게 오팔보석이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질을 이루는 구조가 규칙적인 나노구조로 되어 있기 때문이며 이러한 구조를 광결정이라 한다. 이러한 구조의 광결정은 특정한 파장 영역대의 빛만을 완전히 선택적으로 반사시키는 기능을 보유하게 된다. 생명화학공학과 양승만 교수팀 (광자유체집적소자 창의연구단)은 파장이 서로 다른 빛들을 반사하는 오팔 광결정을 미세소자에 연속적으로 도입하여 무지개 같은 띠 모양으로 제작할 수 있는 기술을 확보했으며 이를 이용해 극미량의 물질을 정밀하게 분석할 수 있는 칩 크기 수준의 미세분광기를 최근 제조했다. 사람마다 고유한 지문을 갖듯이 물질을 이루는 분자도 고유한 지문을 갖는데 이는 분자마다 특정 파장의 빛만을 선택적으로 흡수하거나 방출하는 독특한 스펙트럼을 갖기 때문이다. 따라서, 물질을 구성하는 분자를 광학적으로 인식하기 위해서는 분광분석기 (spectrometer)라는 기기가 필요하며 이는 물질이 갖고 있는 다양한 광정보 처리를 위해 광자소자 및 분석소자를 구성하는데 꼭 필요한 요소 중 하나이다. 그러나 기존의 분광기는 파장에 따른 빛의 공간적 분할을 위한 격자(grating) 및 빛의 진행에 필요한 공간을 요구하므로 고가의 큰 장치로만 제작이 가능하였다. 최근에 많은 주목을 받고 있는 생명공학의 산업적 이용이나 신약개발을 위해서는 부피가 나노리터(10-9L)~펨토리터(10-15L) 정도의 극미량의 샘플을 처리해야 하므로 분석실험실을 반도체 칩과 같이 초소형화한 소위 ‘칩위의 실험실: Lab on a Chip’이 필연적으로 요구된다. 이를 구현하기 위해서는 칩 내부에 분광분석기와 같은 분석소자를 설계해 도입해야 하나 기존의 기술로는 현실적으로 불가능 했다. 이번 연구 결과는 초소형 분석소자의 실용성을 구현하는데 크게 기여한 점을 인정받아 국제적 저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 3월호 표지논문(cover paper)으로 게재됐다. 또한, 나노기술 분야의 세계적 포털사이트인 Nanowerk (http://www.nanowerk.com/)는 이번 연구결과를 ‘광결정으로 미세 분광기를 만들다(Photonic crystals allow the fabrication of miniaturized spectrometers)’라는 제목의 스포트라이트(Spotlight)로 소개하기도 했다. 칩규모의 초소형 물질감지소자는 세계적인 연구그룹들이 활발히 개발 중이다. 이번 연구의 결과는 초소형 분광분석기 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 그림1. 반사색이 연속적으로 변하는 광결정 분광기의 저배율 및 고배율 사진 (분광기가 손톱크기로 초소형화 되었음을 확인할 수 있다) 기본 원리는 아래 그림과 같이 다른 반사스펙트럼을 갖는 콜로이드 광결정을 패턴화하면 미지의 빛이 입사할 경우 반사하는 빛의 세기만을 통해 입사한 미지의 빛의 스펙트럼을 알아낼 수 있다는 것이다. 이러한 아름다운 반사색을 보이는 광결정은 오팔보석, 공작새 깃털, 나비날개, 딱정벌레 등 자연계에 많이 존재하는데 양 교수 연구팀에서는 이를 규칙적으로 패턴화하여 전체 가시광 영역에서 배열한 것이다. 이러한 광결정을 이용하면 공간에 따른 빛의 세기분포를 파장에 따른 빛의 세기분포 즉 스펙트럼으로 물질을 이루는 분자를 재분석해낼 수 있다. 이는 기존의 분광기와는 달리 긴 진행거리를 요구하지 않기 때문에 소형화가 가능하고 신호의 검출은 미세검출기 배열을 통해 가능할 것으로 예상된다. 그림2. 가시광 영역에서 반사스펙트럼을 갖는 콜로이드 광결정 (내부의 나노구조는 나비날개와 공작새 깃털 구조의 광결정와 유사하다) <용어설명>○ 콜로이드 : 물질의 분산상태를 나타내는 것인데, 보통의 분자나 이온보다 크고 지름이 1nm~100nm 정도의 미립자가 기체 또는 액체 중에 분산된 것은 콜로이드 상태라고 부른다. 예를 들어, 생물체를 구성하는 물질 대부분이 콜로이드 상태로 존재한다.
2010.03.16
조회수 23694
과학동아, 광자유체집적소자연구단(단장 생명화공 양승만교수) 소개
과학동아 2010년 1월호는 우리학교 생명화학공학과 양승만교수가 단장으로 지휘하는 "광자유체집적소자 연구단"을 4페이지에 걸쳐 소개했다. "광결정으로 전자종이와 잠자리 눈 센서 만든다"란 제목의 이 기사에서는 창의연구단인 양승만 교수의 연구단이 미세한 양의 유체를 마음대로 조절하는 장비를 만들어 대량의 광결정을 순식간에 만든는 획기적인 방법을 개발했다고 보도하고 있다. 자세한 내용은 과학동아 2010년 1월호의 관련기사 PDF를 통해 확인할 수 있다. PDF로 기사보기 201001-donag-science.pdf 매체: 월간지 과학동아 일시: 2010년 1월호 면수: 총 4면 게재(162~165쪽) 기자: 김윤미 기자(ymkim@donga.com)
2010.01.07
조회수 15102
양승만교수, ˝천하의 영재들과 함께하는 게 가장 큰 기쁨˝
우리학교 생명화학공학과 양승만 교수는 월간 과학동아 2010년 1월호에 보도된 "창의연구단-광자유체집적소자연구단(단장 양승만)" 소개기사 4페이지 짜리의 일부인 박스기사 인터뷰에서 이렇게 말했다. "천하의 영재들과 함께 하는 게 가장 큰 기쁨"이란 제목으로 보도된 인터뷰 기사 내용은 다음과 같다. “천하의 영재들과 함께하는 게 가장 큰 기쁨”지난 2년 동안 양승만 교수는 유난히 상복이 많았다. 2008년에는 KAIST가 선정하는 ‘올해의 KAIST인 상’ 수상자로 선정됐고, 지난 11월에는 경암교육문화재단이 주관하는 제5회 경암학술상 공학부문 수상자로 뽑히는 영예를 안았다. 이는 지난 2년 동안 ‘앙게반테 케미’와 ‘어드밴스트 머티리얼즈’ 같은 국제 유명 학술지에 30여 편의 논문을 발표하며 세계 유수의 대학에 있는 교수들과 비교해도 월등히 우위에 있음을 증명한 결과다. 이들 논문 30여 편 중 다수가 표지논문이나 주목해야 할 논문으로 선정됐으며, ‘네이처’, ‘네이처 포토닉스’와 같은 학술지의 하이라이트로 소개됐다.하지만 양 교수는 한사코 수상의 영광을 함께 일한 연구원들에게 돌렸다. “내가 복이 많은 거죠. 천하의 영재들을 가르칠 수 있는 이곳 KAIST에서 연구하는 기회를 얻었으니까요.” 그는 1978년부터 KAIST와 인연을 맺었고, 1985년부터 KAIST 교수로 일했다. 그가 말하는 ‘발전하는 학생’에 대한 얘기는 새겨들을 만하다.“큰 아이디어는 교수가 제시할 수 있어요. 하지만 이 아이디어를 계속해서 발전시키는 건 학생들이죠. 여러 시도를 충분히 해보는 가운데 새로운 아이디어가 떠오르니까요. 시도는 하지 않은 채 머릿속으로만 생각하는 학생은 안 되는 이유만 생각하기 때문에 발전할 수 없어요.” 양 교수는 아직도 일이 재밌고 연구가 신난다고 말했다. 계속해서 좋은 결과들이 나오니까 당연한 얘기인지도 모르겠다. 항상 젊은 학생들을 만나다 보니 나이 드는 줄도 모르겠단다. 끈끈한 동료애가 가득한 광자유체집적소자 연구단의 연구실은 추운 겨울에도 따뜻했다.
2010.01.07
조회수 16859
양승만 교수, 액체 방울을 이용한 초소형 인조곤충눈 구조 제조
- 초정밀 극미량 물질 인식센서로 활용 - 네이처 포토닉스에서‘미세패턴기술-광자돔’이라는 제목의 하이라이트로 소개 곤충 및 갑각류 등의 눈은 포유류의 눈과는 달리 수백~수만개의 홑눈(또는 낱눈)이 모여 생긴 겹눈 구조를 갖고 있다. 각각의 홑눈은 투명한 볼록렌즈로서 빛을 모아 명암, 색깔(파장)과 같은 빛 정보를 뇌에 전해 주며 뇌에서 전달된 정보를 재조합하여 사물을 감지한다. 각 홑눈은 육방밀집구조로 서로 빈틈없이 배열되어 돔 형태의 겹눈 표면을 메우고 있다. (파리와 잠자리의 눈 사진참조) 생명화학공학과 양승만 교수의 광자유체집적소자 창의연구단은 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 자기조립 원리를 규명하는 연구를 수행하여 실제 곤충눈의 수백분의 일 크기의 초소형 인조겹눈구조를 실용적으로 제조할 수 있는 방법을 최근 개발했다. 이 연구결과는 최근 국제적 저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 誌 10월호 표지논문(cover paper)으로 게재 됐으며 인조곤충눈 구조의 실용성을 구현하는데 크게 기여한다고 인정받아 특별히 주목해야할 논문(Advances in Advance)으로 선정됐다. 특히, 네이처 포토닉스(Nature Photonics)지는 10월호에서 양 교수팀 연구의 중요성과 응용성에 주목하여 이 연구결과를 "미세패턴기술-광자돔(Micropatterning–Photonic domes)"이라는 제목으로 "뉴스와 논평(News & Views)"란에 하이라이트로 선정하여 비중있게 게재했다. 지난 20여 년 동안 곤충눈, 오팔, 나비날개 등 빛정보를 처리할 수 있는 자연계에 존재하는 구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔으나, 실용적인 구조를 얻는 데에는 한계가 있었다. 양 교수팀은 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’으로부터 지원을 받아 초소형 인조곤충눈 구조를 실용적으로 제조할 수 있는 기술을 확보하기 위한 연구를 수행해 왔다. Nature Photonics지 10월호가 하이라이트로 선정하여 주목한 양 교수팀의 이번연구에서는 실제 곤충눈 크기의 수백분의 일 정도로 초소형이며 균일한 크기와 모양을 갖는 인조곤충눈 구조를, 크기가 수십 마이크로미터인 균일한 기름방울을 이용하여 성공적으로 제조하여 규칙적으로 배열하였다. 특히 주목할 것은 제조공정이 손쉽고 빠른 나노구슬의 자기조립 원리를 이용한 점이다. 우선 크기가 수백 나노미터인 균일한 유리구슬(낱눈렌즈)을 물속에 분산시킨 후, 크기가 수십 마이크로미터인 균일한 기름방울을 주입하고 물-기름-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬이 물과 기름방울 사이의 경계면으로 이동한다. 그 후 물-유리-기름방울의 혼합물을 기판 위에 뿌리면 기름방울이 반구의 돔 모양으로 변형되고 유리구슬렌즈는 저절로 기름방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다 (전자현미경사진 참조). 이 때 자외선을 기름방울에 쪼여서 고형화시킴으로써 종래에 수십 시간이 소요되는 인조곤충눈 조립공정을 불과 수분 만에 제조할 수 있다. 수 천개의 미세렌즈가 장착된 돔 구조의 초소형 인조곤충눈은 인간의 눈에 비해 시야각이 넓고 빛을 모으는 능력도 매우 높다. 따라서, 환경의 미세한 변화를 감지할 수 있는 능력을 보유하므로 신약개발을 비롯하여 극미량의 물질을 인식할 수 있는 초고감도 감지소자를 요구하는 다양한 분야에 응용될 수 있다. 특히 최근에 신약개발 등 바이오 산업의 실용화에 사용되고 있는 극미량의 시료를 처리할 수 있는 반도체칩 규모의 실험실인 랩언어칩(Lab on a Chip)에 초소형 인조곤충눈을 도입할 경우 높은 정밀도를 갖는 물질 감지소자로 활용될 수 있다. 이러한 인조곤충눈 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근에 수 밀리미터 크기의 실제 곤충눈 크기의 인조곤충눈은 보고된 바 있다. 그러나, 본 연구의 결과는 초소형 인공곤충눈 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소다.
2009.10.06
조회수 26454
생명화공과 양승만 교수 경암학술상 수상
우리학교 생명화학공학과의 양승만 교수가 경암교육문화재단이 수여하는 제5회 학술상 공학부문에 선정됐다. 경암재단은 부산 향토기업인 태양그룹 송금조 회장이 사재 1천억원을 털어 2004년 설립한 재단이다. 호암상, 청암상, 인촌상에 이어 국내 최대주순의 상금을 수여한다. 제5회 경암학술상 수상자는 총 5명으로 우리학교 생명화학공학과의 양승만 교수가 공학부문에 선정됐으며, 이 밖에도, 인문.사회부문 김경만 교수, 자연과학 부문 노태원 서울대 교수, 생명과학 부문 김영준 연세대 교수, 예술 부문 피아니스트 백건우 씨 등이 선정됐다. 수상자들에게는 각각 1억 원의 상금이 수여되며 시상식은 11월 6일 부산에서 열릴 예정이다. 양 교수는 다양한 기능을 갖춘 양자점, 반도체, 전이금속, 합성수지로 구성된 콜로이드 제조와 분산계의 제어 및 자기조립을 유도하는 콜로이드 입자 사이의 상호 작용에 대한 연구를 바탕으로 많은 양의 정보를 처리할 수 있는 프로토타입의 광 바이오 기능성 광자결정 구조체를 개발해 상을 수상하게 됐다.
2009.09.22
조회수 16599
'올해의 KAIST인 상'에 양승만(梁承萬)교수 선정
우리학교는 2008년도 ‘올해의 KAIST인 상’에 생명화학공학과 양승만(梁承萬, 58) 교수를 선정했다. 시상식은 지난 1월2일(금) 오전 10시 교내 대강당에서 열리는 2009년도 시무식에서 있었다. 梁 교수는 2008년도 한 해 동안 20편의 논문을 국제 저명학술지에 게재했는데, 이 중 3편의 논문이 네이처(Nature)지 등 해외 저명학술지에 ‘리서치 하이라이트’로 소개되었으며, 4편의 논문이 어드밴스드 머티리얼(Advanced Materials) 지 등에 ‘표지논문’으로 게재된 바 있다. 2008년도에 발표된 梁 교수의 논문에 대한 영향력 계수(임팩트 팩터, impact factor) 누계는 114.48, 논문 1편당 임팩트 팩터는 5.72다. 지표상으로 볼 때 이 결과는 MIT 화학공학과 교수의 학술실적과 비교해도 월등한 우위에 있고 상위 몇 몇 교수와 비슷한 수준이다. 양승만 교수 프로필 <학력> 1976 서울대학교 화학공학과 학사 1978 KAIST 화학공학과 석사1985 칼텍(Caltech) 화학공학과 박사 <수상실적> 2001, 2003 한국과학기술단체총연합회 우수논문상 2003 KAIST 학술상 2004 한국화학공학회 학술상 2006 한국광학회 우수논문상 2006 한국화학공학회 영문지 논문상(최다인용) 2007 듀폰 과학기술상
2009.01.02
조회수 20362
양승만 교수, 천연색 화소용 야누스입자 제조
- 차세대 표시소자의 핵심소재 - 네이처誌와 어드밴스드 머티리얼스誌 최근호에 게재 광자결정 기반 광자유체 신기술들을 개발하여 세계 최고 권위의 학술지인 네이처 포토닉스(Nature Photonics)誌 등에 관련 논문을 게재했던 국내 연구진이 최근 또 다른 광자결정 신기술을 개발했다. KAIST 생명화학공학과 양승만(梁承萬, 58세, 광자유체집적소자 창의연구단 단장) 교수 연구팀이 지난 8월 ‘굴절률 조절이 가능한 미세입자 대량생산기술‘과 ’광자유체 기술을 이용한 광결정구 연속생산 기술‘을 개발한데 이어, 이번에는 "전자종이(e-paper)"나 "접을 수 있는 디스플레이(flexible display)"를 구현하는데 필요한 핵심소재인 천연색 화소를 실용적으로 제조할 수 있는 광자결정구조체를 개발했다. 관련 논문은 국제적 저명 학술지인 어드밴스드 머티리얼스(Advanced Materials)誌 최근호(11월 3일자)에 게재됐으며, 광자결정의 실용성을 구현하는데 크게 기여했다고 인정받았다. 특히, 네이처(Nature)誌 최근호(11월 6일자)는 梁 교수 연구팀 연구의 중요성과 응용성에 주목하여 “나노기술 - 차세대 표시소자 (Nanotechnology-Future Pixels)”라는 제목 하에 리서치 하이라이트(Research Highlights)로 선정했다. 梁 교수 연구팀은 균일한 크기와 모양을 갖는 광자결정구를 생산하는데 있어 크기가 수십 혹은 수백 마이크로미터인 균일한 액체방울에 나노입자를 가두고, 빛을 매개로 액체를 고형화 시킴으로써 종래에 수십 시간 소요되던 광자결정 자기조립공정을 연속적으로 불과 수십 초 만에 제조할 수 있는 기술을 이번 연구에서 확보했다. 이들 광자결정구는 차세대 반사형디스플레이 색소나, 나노바코드, 생물감지소자 등으로 활용될 수 있다. 특히 주목할 것은 몇 개의 다른 색을 반사하는 야누스 광자결정구슬을 제조했다는 것과, 전기장을 이용하여 이들 야누스 구슬을 회전시켜 실시간으로 색깔을 바꿀 수 있도록 광자결정 내부에 전기적 이방성을 갖도록 했다는 점이다. 전기장으로 야누스 구슬을 구동시켜 색 조절을 가능케 한 이번 기술은 앞으로 ‘전자종이"나 "접을 수 있는 디스플레이" 소자에 활용될 수 있다. 이러한 광자결정 표시소재는 현재 세계굴지의 화학회사들이 연구개발 중이며 이번 연구 결과는 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 지난 20여 년 동안 자연 상태에 존재하는 광자결정의 나노구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의해 시도돼 왔으나, 실용적인 구조를 얻는 데에는 한계가 있었다. 梁 교수팀은 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’으로부터 지원을 받아 광자결정소재의 실용성을 확보하기 위한 연구를 수행하여 최근 해외 저명학술지로부터 크게 주목 받는 연구 성과를 거뒀다. <용어설명> 광자결정 : 광자결정은 굴절률이 다른 물질이 규칙적으로 쌓여서 조립된 결정체로서 오팔보석, 나비와 공작새의 날개 등이 자연에 존재하는 광자결정이다. 이들이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질을 이루는 구조가 규칙적인 나노구조로 되어 있기 때문이다. 예를 들면, 오팔은 크기가 수백 나노미터(머리카락 굵기의 약 100 분의 1정도)의 유리구슬이 차곡차곡 쌓여 있는 것으로서 오팔이 아름다운 색을 띄는 것은 오팔이 자신의 광 밴드 갭, 즉 오팔이 선택적으로 반사하는 파장영역대의 빛만을 우리가 볼 수 있기 때문이다. 마찬가지로 나비의 날개나 공작새의 깃털을 전자현미경을 통하여 보면 아주 작은 공기주머니가 날개나 깃털의 기질 속에 규칙적으로 적층되어 있는 광자결정구조를 보유하고 있음을 알 수 있다. 즉, 이러한 구조의 광자결정은 특정한 파장 영역대의 빛만을 완전히 선택적으로 반사시키는 기능을 보유하게 된다. 이러한 특수한 기능으로 인하여 광자결정은 나노레이저, 다중파장의 광정보를 처리할 수 있는 슈퍼프리즘(superprism), 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발에 필요한 소재로 주목 받고 있다. 이러한 이유로 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다.
2008.11.12
조회수 19509
생명화학공학과 양승만교수 광자유체 신기술개발
생명화학공학과 양승만(梁承萬, 58세, 교육과학기술부 지정 광자유체집적소자 창의연구단 단장) 교수 연구팀이 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 ‘자기조립원리’를 규명하는 연구를 수행하여, 방대한 량의 정보를 처리할 수 있는 프로토타입(prototype)의 광․바이오 기능성 광자결정(photonic crystal)구조체를 개발했다. 자연계에 존재하는 대표적인 광자결정은 오팔보석, 나비의 날개, 공작새의 깃털 등이 있다. 이들 광자결정 물질들이 발산하는 아름다운 색깔은 색소에 의한 것이 아니라 이 물질들을 이루는 구조 자체가 규칙적인 나노구조로 되어 있기 때문이다. 즉, 광자결정은 굴절률이 다른 물질들이 규칙적으로 쌓여 조립된 3차원 구조체로 특정한 영역의 파장에 해당하는 빛만 완전히 반사시킨다. 이 성질을 이용하면 반도체가 전자의 흐름을 제어하듯 빛의 흐름을 제어할 수 있다. 이러한 광자결정의 특수한 기능 때문에 나노레이저, 다중파장의 광 정보를 처리할 수 있는 슈퍼프리즘(superprism), 빛을 원하는 위치로 가이드 할 수 있는 광도파로(waveguide) 등 차세대 광통신 소자와 현재의 컴퓨터 속도를 획기적으로 높일 수 있는 수십 테라급 초고속 정보처리능력을 갖춘 광자컴퓨터의 개발 등에 필요한 소재로 주목 받아왔다. 광자결정은 광자(빛)가 정보를 처리하는 미래에 오늘날의 반도체와 같은 역할을 할 것이므로 ‘빛의 반도체’라 불린다. 지난 20여 년 동안 자연 상태에 존재하는 광자결정의 나노구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔지만 실용적인 구조를 얻는 데에는 한계가 있었다. 梁 교수팀은 2006년부터 교육과학기술부와 한국과학재단의 ‘창의적연구진흥사업’으로부터 지원을 받아 광자결정소재의 실용성을 확보하기 위한 연구를 수행하여 최근 해외 저명학술지로부터 크게 주목 받는 일련의 연구 성과를 거뒀다. 첫 번째 연구 성과로 굴절률 조절이 가능한 미세입자 대량 생산기술을 개발했다. 지금까지 구현된 3차원 광자결정은 결정을 이루는 물질의 굴절률이 1.5-2.0 정도로 낮고, 굴절률을 다양하게 조절할 수 있는 입자를 제조할 수 없어서 광자결정의 실용성에 한계가 있었다. 최근 梁 교수 연구팀은 굴절률을 1.4-2.8까지 마음대로 조절할 수 있는 입자를 대량으로 제조할 수 있는 실용적 방법을 개발했다. 제조된 고 굴절률 입자는 나노레이저, 광 공명기, 마이크로렌즈, 디스플레이 등 각종 광학소자와 광촉매 등으로 활용될 수 있다. 이 연구결과는 최근 어드밴스드 머티리얼스 인터넷판(6. 19)과 제 17호(2008. 9)의 표지논문으로 게재 예정이다. 특히, 이 논문은 저명 학술지인 네이처 포토닉스(Nature Photonics)誌 8월호(8. 1)에 리서치 하이라이트(Research Highlights)로 선정되어 연구의 중요성과 응용성에 대하여 특별기사로 조명했다. 그림 1. 초고굴절률 타이타니아 입자의 전자 현미경 사진 두 번째 연구 성과로 광자유체 기술을 이용한 광결정구 연속생산 기술을 개발했다. 균일한 크기와 모양을 갖는 광자결정구를 빛을 매개로 반응시킴으로써 종래에 수십 시간이 소요되는 공정을 불과 수십 초 만에 연속적으로 제조할 수 있는 기술을 확보했다. 이들 광자결정구는 차세대 반사형디스플레이 색소나, 나노바코드, 생물감지소자 등으로 활용될 수 있다. 특히 주목할 것은 몇 개의 다른 색을 반사하는 야누스 광자결정구슬을 제조하였는데 이들은 전자종이와 같은 접거나 말 수 있는 차세대 디스플레이 소자에 활용될 수 도 있다. 이러한 광자결정 표시소재는 세계굴지의 화학회사인 독일 머크(Merck)社 등에서도 개발 중이며 이번 연구 결과는 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소이다. 주요 연구결과는 국제적저명학술지인 미국화학회지(JACS)와 어드밴스드 머티리얼스(Advanced Materials)誌에 6편의 논문을 최근 4개월(5~8월) 동안 연속 게재하여 광자결정의 실용성을 구현하는데 크게 기여했다고 인정받았다. 특히, 이들 논문들은 해당 학술지 편집인(Editor)과 심사위원들에 의하여 가장 앞선 연구결과로서 주목해야 할 논문(Advances in Advance)으로 선정됐으며, 9호(5. 5) 표지논문에 게재됐다. 그림 2. 3원광 광자결정구와 다색상 야누스 광자결정구의 현미경사진과 휘어지는 기판 위에 픽셀화된 3원광 광자결정. 세 번째 연구 성과로 광자유체 기술을 이용한 광결정 나노레이저를 개발했다. 현재까지 개발된 나노레이저는 발생하는 고열로 인하여 발진하는 레이저의 파장을 변화시키기 어려운 단점이 있었다. 梁 교수 연구팀은 KAIST 물리학과의 이용희 교수 연구팀과 공동으로 연속가변파장 나노레이저를 최초로 개발했다. 레이저를 발진하는 광자결정과 매우 미세한 유량을 도입할 수 있는 미세유체소자를 결합한 후 물과 같은 액체를 흘려줌으로써 온도를 낮추어 연속파 레이저 발진을 가능케 하였다. 또한 굴절률이 다른 액체를 흘려주어 광밴드갭을 조절함으로써 레이저의 파장을 조절 할 수 있었다. 가변파장 나노레이저는 신약개발 등 생명공학에서 요구되는 극미량의 시료로부터 방대한 량의 바이오정보를 광학적으로 신속하게 처리하는데 필요한 광원으로 사용될 수 있다. 이 연구 결과는 광물리 분야의 저명학술지인 옵틱스 익스프레스(Optics Express)에 게재(4. 9) 됐으며 이 논문의 독창성과 실용성은 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 저명학술지 랩온어칩(Lab on a Chip) 8월호(8. 1)에 해설과 함께 “리서치 하이라이트”로 소개됐다. 그림 3. 나노레이저 발진모드
2008.08.19
조회수 23814
양승만교수, 듀폰과학기술상 수상자로 선정
- 2007년 듀폰과학기술상 수상자로 선정- 나노입자들의 자기조립 원리를 이용, 광×바이오 기능성 광자결정(photonic crystal)구조체 개발KAIST(총장 서남표) 생명화학공학과 양승만 교수(과학기술부 지정 광자유체집적소자 창의연구단 단장)가 2007년 듀폰과학기술상 수상자로 선정되었다. 세계적인 과학 회사인 듀폰의 한국내 법인인 듀폰코리아는 국내 기초과학의 진흥과 산업발전을 도모하기 위해 2002년부터 ‘듀폰 과학기술상’을 제정해 시상해 왔다. 듀폰과학기술상은 국내 대학 및 국 공립 연구소 재직자 중 화학, 화학공학, 재료과학 및 재료공학 분야에서 최근 5년 뛰어난 연구개발 업적을 보인 과학자에게 수여된다. 듀폰코리아는 지난 3월 15일까지 응모를 받은 뒤 한국과학기술한림원의 심사를 거쳐 2007년 5월 2일 양승만 교수를 수상자로 발표하였다.양승만 교수는 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 자기조립 원리를 규명하는 연구를 수행하여 방대한 량의 정보를 처리할 수 있는 pototype의 광 바이오 기능성 광자결정(photonic crystal)구조체를 개발하였다.양교수가 최근에 수행한 광자구조와 나노패턴에 대한 연구결과는 학술지인 Nature지(2006년도 2월 2일자)에서 보유기술의 기반성과 발전 가능성에 대한 해설과 함께 하이라이트 기사로 다루어졌다. 미국 화학회의 Portal인 Heart-Cut에는 2차례 (2002. 11. 4 및 2006. 5. 1일자)에 걸쳐 하이라이트 논문으로 선정되었다. 2003년 12월의 미국 재료학회 MRS Bulletin의 Research/Researcher에서는 주요 논문으로 소개된 바 있다. 양교수는 그 동안 Harvard University, University of Wisconsin, Caltech, University of California 등에서 초청 세미나를 하였고 국제학회인 MRS와 SPIE 에서 각각 Invited Speaker 및 Session Organizer로 활약하고 있다.
2007.05.04
조회수 22919
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2