암 전이‘세포 이동의 비밀’풀었다
우리 몸에 생긴 암세포가 다른 부위로 퍼지는 암 전이나, 상처를 치유하기 위해 면역세포가 이동하는 과정 등 세포의 이동은 생명현상에 꼭 필요한 과정이다. 그러나 그동안 세포가 외부 자극 없이 스스로 이동 방향을 결정하는 원리는 밝혀지지 않았다. 우리 대학과 국제 공동 연구진은 이번 연구를 통해 세포가 스스로 방향을 정해 움직이는 원리를 규명, 향후 암 전이와 면역 질환의 원인을 밝히고 새로운 치료 전략을 세우는 데 중요한 단서를 제시했다.
우리 대학은 생명과학과 허원도 석좌교수 연구팀이 바이오및뇌공학과 조광현 석좌교수 연구팀, 미국 존스홉킨스대 이갑상 교수 연구팀과 공동으로 세포가 외부의 신호 없이도 스스로 이동 방향을 결정하는 ‘자율주행 메커니즘’을 세계 최초로 규명했다고 10일 밝혔다.
연구팀은 살아있는 세포 안에서 단백질들이 서로 어떻게 상호작용하는지를 눈으로 직접 볼 수 있는 새로운 이미징 기술 ‘INSPECT(INtracellular Separation of Protein Engineered Condensation Technique)’를 개발했다. 이 기술을 이용해 세포가 스스로 어느 방향으로 움직일지를 정하는 내부 프로그램의 원리를 밝혀냈다.
연구팀은 세포 이동을 조절하는 핵심 단백질인 Rho 계열 단백질(Rac1, Cdc42, RhoA)의 작동 방식을 새롭게 분석했다. 그 결과, 이 단백질들이 기존에 알려진 이론인 단순히 세포의 앞뒤를 나누는 역할만 하는 것이 아니라, 어떤 단백질과 결합하느냐에 따라 세포가 직진할지, 방향을 바꿀지가 달라진다는 사실을 밝혀냈다.
INSPECT 기술은 단백질이 서로 붙을 때 서로 잘 섞이지 않고 구분된 영역이 자연스럽게 생기는 ‘상분리(phase separation)’현상을 인공적으로 구현하는 기술로, 세포 속에서 단백질들이 실제로 어떻게 결합하는지를 형광 신호로 직접 볼 수 있는 기술이다.
연구팀은 단백질 페리틴(ferritin)과 형광단백질 DsRed를 활용해, 단백질들이 서로 결합할 때 작은 방울처럼 뭉친 덩어리인 ‘응집체(condensate)’를 눈으로 확인할 수 있게 했다.
이 기술로 연구팀은 15종의 Rho 단백질과 19종의 결합 단백질을 조합해 총 285쌍의 상호작용을 분석했고, 그중 139쌍에서 실제 결합이 일어남을 확인했다. 특히, Cdc42–FMNL 단백질 조합은 세포의 ‘직진’을, Rac1–ROCK 단백질 조합은 세포의 ‘방향 전환’을 담당하는 핵심 회로라는 사실을 밝혀냈다.
연구팀은 세포의 방향 조절에 중요한 단백질 Rac1의 일부(37번째 아미노산)를 살짝 바꿔서, 그 단백질이 ‘핸들 역할’을 하는 ROCK 단백질과 잘 붙지 못하게 만들었다. 그러자 세포는 방향을 바꾸지 못하고 계속 직선으로만 이동했다.
반면 정상 세포에서는 Rac1과 ROCK이 잘 결합해서 세포 앞부분에 ‘아크 스트레스 섬유(arc stress fiber)’라는 구조가 생기고, 이 섬유는 세포가 방향을 바꿀 때 직각에 가까운 방향 전환이 되도록 했다.
또한 세포가 붙어 있는 환경을 변화시킨 실험에서, 정상 세포는 주변 환경에 따라 이동 속도가 달라졌지만, Rac1F37W 세포(핸들이 고장난 세포)는 환경 변화와 관계없이 속도는 항상 똑같았다. 이는 Rac–ROCK 단백질 축이 세포가 주변 환경을 인식하고 적응하는 능력을 세밀하게 조절한다는 것을 보여준다.
허원도 교수는 “이번 연구는 세포 이동이 무작위적인 운동이 아니라, Rho 신호전달 단백질과 세포 이동 관련 단백질의 앙상블이 만들어내는 내재적 프로그램에 의해 정밀하게 제어된다는 사실을 규명한 것”이라며, “새롭게 개발한 INSPECT 기술은 세포 내 단백질 상호작용을 시각화할 수 있는 강력한 도구로, 암 전이와 신경세포 이동 등 다양한 생명현상과 질병의 분자 메커니즘을 밝히는 데 폭넓게 활용될 것”이라고 말했다.
KAIST 이희영 박사, 이상규 박사(현재 기초과학연구원(IBS) 소속), 서예지 박사(현재 (주)휴룩스 소속), 김동산 박사(현재 LIBD 소속)가 공동 제1저자로 참여한 이번 연구는 네이처 커뮤니케이션즈(Nature Communications)에 10월 31일 게재되었다.
※논문명: A Rho GTPase-effector ensemble governs cell migration behavior
※DOI: https://doi.org/10.1038/s41467-025-64635-0
이 연구는 삼성미래기술육성재단과 한국연구재단의 지원을 받아 수행되었다.
AI와 뇌신호 빛 제어로 파킨슨병 조기진단·치료법 제시
모하마드 알리, 마이클 J. 폭스 등 세계적으로 잘 알려진 인물들이 파킨슨병으로 오랜 시간 투병해 왔다. 이 병은 떨림, 강직, 서동, 자세 불안정 등 복합적인 운동 증상이 나타나지만, 기존 검사법으로는 발병 초기 변화를 민감하게 포착하기 어렵고, 뇌 신호 조절을 겨냥한 약물 역시 임상에서 효과가 제한적이었다. 최근 한국 연구진이 AI와 광유전학을 융합한 기술을 통해 파킨슨병의 정밀 진단과 치료 평가 도구로 활용 가능성을 입증하고, 차세대 맞춤형 치료제 개발 전략을 제시하는 데 성공했다.
우리 대학 생명과학과 허원도 석좌교수 연구팀이 뇌인지과학과 김대수 교수(생명과학기술대학 학장) 연구팀, 기초과학연구원(IBS 원장 노도영) 이창준 단장(인지 및 사회성 연구단) 연구팀과 함께 인공지능(AI) 분석과 광유전학(optogenetics)을 결합해 파킨슨병 동물 모델에서 조기·정밀 진단과 치료 가능성을 동시에 입증하는 전임상 연구 성과를 거두었다고 22일 밝혔다.
연구팀은 두 단계의 중증도를 가진 파킨슨병 생쥐 모델(알파-시누클레인 단백질 이상으로 파킨슨병을 유발한 실험용 수컷 생쥐로, 사람의 파킨슨병을 모사하여 진단·치료 연구에 활용되는 표준 모델)을 구축하고, 뇌인지과학과 김대수 교수 연구팀과의 공동 연구를 통해 인공지능 기반 3D 자세 추정 기술을 행동 분석에 도입했다.
연구팀은 파킨슨병 생쥐의 걸음걸이, 손발 움직임, 떨림 같은 340여 가지 행동 신호를 인공지능으로 분석해 하나의 점수(파킨슨 행동지수)로 만들었습니다. 이 지수를 통해 파킨슨병을 발병 초기부터 기존 검사보다 더 정확하게 구분할 수 있음을 확인했습니다.
분석 결과, 파킨슨 행동지수는 질환 유도 2주 시점부터 대조군 대비 유의한 차이를 보였으며, 기존 운동능력 검사보다 더 민감하게 질환 정도를 판별했다. 예를 들어 보폭 변화, 손발 움직임 비대칭, 흉부 떨림 같은 행동이 파킨슨병 진단의 핵심 요인임을 밝혔다. 따라서 상위 20개 행동 표지에는 손·발 비대칭, 보폭·자세 변화, 흉부 고빈도 성분 증가 등이 포함됐다.
이러한 행동 지표가 단순히 운동 기능 저하를 나타 내는 것인지, 파킨슨병에만 나타나는 특이한 변화인지 확인하기 위해, 연구팀은 IBS 이창준 단장팀과 함께 루게릭병 생쥐 모델에도 같은 분석을 적용했다. 파킨슨병과 루게릭병(ALS) 모두 운동 기능에 문제가 생기는 질환이기에 단순히 운동이 나빠진 것 때문이라면 두 질환 모두에서 높은 파킨슨 행동지수가 나와야 한다.
분석 결과, 루게릭병(ALS) 동물 모델은 운동 기능이 떨어졌음에도 파킨슨병에서 보였던 높은 파킨슨 행동지수는 나타나지 않았다. 오히려 낮은 수준을 유지했으며, 행동 변화 양상도 파킨슨병과는 확연히 달랐다. 이는 이번에 개발한 파킨슨 행동지수가 단순한 운동 장애가 아니라 파킨슨병에만 나타나는 특징적인 변화와 직접적으로 관련됨을 보여준다.
연구팀은 파킨슨병 치료를 위해서 뇌 신경 세포기능을 빛으로 정밀하게 조절하는 광유전학 기술 ‘옵토렛(optoRET)’을 활용했다.
그 결과, 파킨슨병 동물 모델에서 걷기와 팔다리 움직임이 더 매끄러워지고 떨림 증상이 줄어드는 효과가 확인됐다. 특히 하루 걸러 한 번 빛을 쏘는 방식(격일 주기)이 가장 효과적이었으며, 뇌 속 도파민 신경세포도 보호되는 경향을 보였다.
허원도 석좌교수는 “이번 연구는 인공지능 기반 행동 분석과 광유전학을 결합해 파킨슨병의 조기진단–치료평가–기전검증을 하나로 잇는 전임상 프레임을 세계 최초로 구현했다”라며, “향후 환자 맞춤형 치료제와 정밀의료로 이어질 중요한 토대를 마련했다”고 밝혔다.
우리 대학 생명과학연구소 현보배 박사후연구원이 제 1저자인 이번 연구 결과는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications) 온라인판에 8월 21일에 게재됐다. 또한, 현 박사는 보건산업진흥원의 ‘글로벌 의사과학자 양성사업’ 지원으로 하버드 의과대학 맥린병원에서 이번 성과를 기반으로 한 파킨슨병 세포 치료제 고도화 연구를 이어가고 있다.
※논문명: Integrating artificial intelligence and optogenetics for Parkinson's disease diagnosis and therapeutics in male mice
※DOI: https://doi.org/10.1038/s41467-025-63025-w
한편, 이번 연구는 KAIST 글로벌 특이점사업, 과학기술정보통신부·한국연구재단, IBS 인지 및 사회성 연구단, 보건복지부·한국보건산업진흥원 지원으로 수행됐다.
"왜 우울한가요?" 우울증 원인 규명하고 치료 실마리 밝혀
우울증(Major Depressive Disorder, MDD)은 전 세계적으로 가장 흔한 정신질환 중 하나지만, 그 분자적 발생 원인*은 여전히 명확히 규명되지 않은 상태다. 국내 연구진은 우울증이 단순한 신경세포 손상 때문만이 아니라, 특정 신경 신호 경로의 교란으로 발생할 수 있음을 밝혀내며, 특히 고령 우울증 환자에게 기존 항우울제가 반응하지 않는 분자적 원인을 규명했다. 이번 연구는 광유전학 기술을 활용한 신경 신호 조절 치료의 가능성을 제시했고, 고령 우울증 환자에게도 향후 ‘Numb’ 단백질을 표적으로 하는 새로운 치료 전략 개발의 실마리를 제공했다.
*분자적 발생 원인: 발병 원인에 대해 뇌 속 분자나 단백질, 유전자 수준에서 설명
우리 대학 생명과학과 허원도 석좌교수 연구팀, 국립과학수사연구원(국과수, 원장 이봉우) 이민주 법의관, 아주대학교의료원 (의료원장 한상욱) 병리과 김석휘 교수 연구팀과 협력하여, 극단 선택을 한 환자의 뇌 조직의 RNA 염기 분석과 면역조직화학 분석을 통해 우울증의 새로운 분자 기전을 규명하고, 광유전학(optogenetics) 기술을 통해 신경 회복을 유도하는 신호 경로를 조절함으로써 항우울 효과를 회복할 수 있음을 동물모델에서 증명했다고 19일 밝혔다.
연구팀은 기억과 감정을 담당하는 뇌 부위인 해마(hippocampus), 특히 ‘치아이랑(dentate gyrus, DG)’이라는 부분에 주목했다. 치아이랑은 해마 안에 정보가 처음으로 들어올 때 새로운 기억 생성, 신경세포가 자라고 감정 조절과 우울증과 연관이 있는 공간에 해당된다.
2가지의 대표적인 우울증 마우스 모델(콜티코스테로이드 스트레스 모델 및 만성 예측 불가능 스트레스 모델)을 이용해 스트레스가 유발될 때, 이 DG 부위에서 성장인자(FGF)라는 신호물질을 받아서 세포 안의 성장·분화 명령을 전달하는‘FGFR1(Fibroblast Growth Factor Receptor 1)’이라는 신호 수용체가 눈에 띄게 늘어났다.
이후, FGFR1 유전자라는 특별 조건을 제거한 ‘조건부 녹아웃(conditional knockout,cKO) 마우스’를 활용하여 해당 수용체가 제거된 상황에서는 스트레스에 더 취약하고 우울 증상을 더 빠르게 나타낸다는 점을 규명했다. 이는 FGFR1이 정상적인 신경 조절 및 스트레스 저항에 중요한 역할을 한다는 것을 시사한다.
이어서 연구팀은 광유전학 기술을 활용해 스트레스 저항하는 데 매우 중요한 FGFR1을 빛으로 활성화할 수 있는 ‘optoFGFR1 시스템’을 개발, FGFR1이 부족한 우울증 마우스 모델에서 이를 활성화함으로써 항우울 효과가 회복되는 현상을 관찰했다. 즉, FGFR1 신호 활성화만으로도 우울 행동이 개선될 수 있음을 실험적으로 입증한 것이다.
하지만 놀랍게도 노화된 우울증 마우스 모델에서는‘optoFGFR1 시스템’을 통한 FGFR1 신호 활성화에도 항우울 효과가 나타나지 않았다. 이에 대한 원인을 탐색하던 중, 연구팀은‘Numb’이라는 단백질이 노화된 뇌에서 과도하게 발현돼 FGFR1의 신호전달을 방해한다는 사실을 밝혀냈다.
실제로 연구팀이 수행한 사후 인간 뇌 조직 분석에서도 나이가 든 우울증 환자에게서만 Numb 단백질의 특이적 과발현이 관찰됐다. 이후, 마우스 모델에 Numb을 억제하는 유전자 조절 도구(shRNA)를 발현시키고 동시에 FGFR1 신호를 활성화한 결과, 회복되지 않던 노화된 우울증 마우스 모델에서도 신경 발생과 행동이 정상 수준으로 회복되었다. 이는 Numb 단백질이 FGFR1 신호 경로의 ‘차단자’ 역할을 하며, 해마의 항우울 기전을 막는 주요 인자임을 보여준다.
KAIST 허원도 석좌교수는 “이번 연구는 우울증이 단순한 신경세포 손상만이 아니라, 특정 신경신호 경로의 교란에 의해 발생할 수 있음을 밝힌 데 큰 의미가 있다. 특히, 고령 환자에게 항우울제가 잘 듣지 않는 이유를 분자적으로 규명하고, 향후 Numb 단백질을 표적으로 하는 새로운 치료법 개발의 실마리를 제공할 것”이라고 말했다.
이어 “또한, KAIST의 뇌신경과학 역량과 국과수의 법의학 기반 뇌 분석 기술이 결합된 이번 융합연구를 통해, 향후 정신 질환 기초 연구와 임상 적용 간 연결 고리가 될 것으로 기대된다”라고 강조했다.
KAIST 생명과학과 신종필 박사과정이 제1 저자로 주도한 이번 연구는 국제 학술지 ‘익스페리멘탈 앤 몰리큘라 메디슨(Experimental & Molecular Medicine)’에 2025년 8월 15일 자로 게재됐다.
- 논문명: Dysregulation of the FGFR1 signaling in hippocampus facilitates depressive disorder
- DOI: https://doi.org/10.1038/s12276-025-01519-9
한편, 이번 연구는 과학기술정보통신부 한국연구재단 ASTRA 및 바이오 의료개발 기술 사업의 지원을 받았다.
빛으로 단백질 · mRNA를 원할 때 꺼내 쓴다
기존의 ‘광유전학적 분자 응축물 기술(생체 분자를 빛을 사용해 특정한 덩어리(응축체)로 뭉치게 하거나 풀리게 조절하는 기술)’은 세포 안에서 여러 단백질이나 RNA가 다양하게 섞이기 때문에 원하는 분자만 골라서 다루기 어렵다는 한계가 있었다. 이 한계를 넘어, 우리 연구진이 ‘빛’을 쪼여 세포 속 특정 단백질이나 유전정보(mRNA)를 원하는 시점에 꺼내 쓸 수 있는 기술을 개발하여 유전자 조절 기술, 신약 개발 등에서의 새로운 가능성을 제시했다.
우리 대학 생명과학과 허원도 석좌교수 연구팀이 물리학과 박용근 석좌교수 연구팀과 협력하여, 단백질 및 mRNA를 세포 내에서 빛으로 원하는 시점에 저장(Store)하고 방출(Release)할 수 있는 ‘릴리저 기술(RELISR, REversible Light-Induced Store and Release)’을 개발했다고 23일 밝혔다.
이번 연구는 세포 내 다양한 생체 분자가 막이 없는 응축체(Biomolecular Condensate)에 저장돼 기능을 조절한다는 최신 세포기능 조절 원리를 빛으로 구현한 기술이다.
연구팀은 특정 분자와 선택적으로 결합하는 표적 부위가 부착된 광유전학 단백질 복합체를 증폭해, 빛 반응 분자 저장·방출 시스템인 릴리저 기술을 설계했다. 이를 통해 세포 및 생체 내에서 특정 단백질 혹은 mRNA를 릴리저에 안정적으로 저장해 빛을 비추면 원하는 시점에 방출할 수 있음을 증명했다.
연구팀은 다양한 세포주와 신경세포, 그리고 생쥐 간 조직 등에서 해당 시스템의 효과를 입증했다.
연구팀은 단백질을 저장⸱방출하는 단백질 방출시스템인 ‘단백질 릴리저 (Protein-RELISR)’를 통해 세포 모양 변화, 신경세포 내 국소 단백질 활성 등 미세 환경에서의 생화학 반응을 실시간으로 제어하는 데 성공했다.
아울러, mRNA를 표적으로 하는 mRNA 방출시스템인‘mRNA 릴리저 (mRNA-RELISR)’를 활용해, mRNA가 세포질 내에서 번역될 시점을 빛으로 조절하는 데 성공했으며, 실제 생쥐 모델에서도 mRNA 번역 조절이 가능함을 확인했다.
빛으로 표적 분자를 순간적으로 ‘가두는’ 기존 연구 LARIAT(단백질 올가미, 2014), mRNA-LARIAT(mRNA 올가미, 2019)에서 나아가, 이번 연구에서는 동일한 광자극으로 세포 내 무막 응축체에 저장된 단백질과 mRNA를 즉시 ‘방출해’단백질의 기능을 복원하고 mRNA 번역을 활성화할 수 있는 새로운 플랫폼을 제시했다.
연구를 주도한 허원도 석좌교수는 “릴리저(RELISR) 플랫폼은 광유전학 원리를 기반으로 단백질과 mRNA를 원하는 시간, 장소에서 저장하고 방출할 수 있는 범용 도구로, 뇌 신경세포 연구나 세포치료제, 차세대 신약 개발 등에 폭넓게 응용될 수 있다”며 “향후 유전자 가위(CRISPR-Cas) 시스템 등과의 결합이나, 조직 특이적 전달 기술(AAV 등)과 접목할 경우, 더욱 정밀한 치료 도구로 확장될 수 있을 것”이라고 설명했다.
이번 연구는 생명과학과 허원도 석좌교수(교신저자)의 지도로, 이채연 박사(연구 당시 학생, 제1 저자)가 중심이 되어 연구를 수행했다. 공동 교신저자인 물리학과 유다슬이 박사와 박용근 석좌교수도 연구에 참여했으며, 특히 박용근 교수 연구팀은 이미징 기반 분석을 통해 세포 내에서 ‘릴리저(RELISR)’ 시스템이 유도하는 생물리학적 변화를 정량적으로 평가하고, 실험 결과의 신뢰성과 객관성을 높이는 데 중요한 역할을 담당했다.
생명과학연구소 이채연 박사가 제1 저자로 주도한 이 연구는 국제 학술지 ‘네이처 커뮤니케이션스(Nature Communications)’에 2025년 7월 7일자로 게재됐다.
논문명: Optogenetic storage and release of protein and mRNA in live cells and animals
DOI: 10.1038/s41467-025-61322-y
한편, 이번 연구는 삼성미래기술육성재단과 한국연구재단 유전자편집·제어·복원기반기술개발사업의 지원을 받아 수행됐다.
세계 최초 유전자 가위로 원하는 RNA ‘콕’ 집어 변형 성공
RNA 유전자 가위는 코로나바이러스와 같은 바이러스의 RNA를 제거하여 감염을 억제하거나 질병 원인 유전자 발현을 조절할 수 있어, 부작용이 적은 차세대 유전자 치료제로 크게 주목받고 있다. 우리 연구진은 세포 내 존재하는 수많은 RNA(유전 정보를 전달하고 단백질을 만드는 데 중요한 역할을 하는 분자) 중에서 원하는 RNA만을 정확하게 찾아서 아세틸화(화학 변형)할 수 있는 기술을 세계 최초로 개발했고, 이는 RNA 기반 치료의 새 장을 열 수 있는 핵심 기술이 될 것으로 기대된다.
우리 대학 생명과학과 허원도 석좌교수 연구팀이 최근 유전자 조절 및 RNA 기반 기술 분야에서 각광받는 RNA 유전자 가위 시스템(CRISPR-Cas13)을 이용해 우리 몸 안의 특정한 RNA에 아세틸화를 가할 수 있는 혁신적 기술을 개발했다고 10일 밝혔다.
RNA는 ‘화학 변형(chemical modification)’이란 과정을 통해 그 특성과 기능이 변화할 수 있다. 화학 변형이란 RNA 염기 서열 자체의 변함없이 특정 화학 그룹이 추가됨으로써 RNA의 성질과 역할을 변화시키는 유전자 조절 과정이다. 그중 하나가 시티딘 아세틸화(N4-acetylcytidine)라는 화학 변형인데, 지금까지는 이 화학 변형이 세포 내에서 어떤 기능을 수행하는지 정확히 알려져 있지 않았다. 특히, 인간 세포의 mRNA(단백질을 만드는 RNA)에 이 변형이 실제로 있는지, 어떤 역할을 하는지 등에 대한 논란이 이어졌다.
연구팀은 이러한 한계를 극복하기 위해 원하는 RNA만을 정밀하게 표적하는 유전자 가위인 Cas13에 RNA를 아세틸화시키는 NAT10의 고활성 변이체(eNAT10)를 결합한 ‘표적 RNA 아세틸화 시스템(dCas13-eNAT10)’을 개발했다. 즉, 원하는 RNA만 정확하게 골라서 아세틸화시키는 ‘표적 RNA 변형 기술’을 만든 것이다.
연구팀은 표적 RNA 아세틸화 시스템과 세포 내 특정 RNA를 찾아 안내하는 가이드 RNA에 의해 원하는 RNA에 아세틸화 화학 변형을 가할 수 있음을 증명했다. 이를 통해 아세틸화 화학 변형된 메신저 RNA (mRNA)에서 단백질 생산이 증가한다는 사실을 확인했다.
또한, 연구팀은 개발한 시스템을 이용해 RNA 아세틸화가 RNA를 세포핵에서 세포질로 이동시킨다는 사실을 최초로 밝혀냈다. 이번 연구는 아세틸화 화학 변형이 세포 내 RNA ‘위치 이동’도 조절할 수 있다는 가능성을 보여주는 결과다.
연구팀은 개발한 기술이 AAV(아데노-관련 바이러스)라는 유전자 치료에 널리 이용되는 운반체 바이러스를 통해 실험 쥐의 간에 전달하여 동물의 몸속에서도 정확히 RNA 아세틸화 조절이 가능할 수 있음을 입증했다. 이는 RNA를 화학 변형하는 기술이 생체 내 적용에 확장될 수 있음을 보여주는 최초의 사례다. 이는 RNA 기반 유전자 치료 기술로의 응용 가능성을 여는 성과로 평가받는다.
RNA 유전자가위를 활용한 코로나 치료기술과 빛으로 RNA 유전자가위 활성화 기술을 개발하였던 허원도 교수는 “기존 RNA 화학 변형 연구는 특정성, 시간성, 공간성 조절이 어려웠지만, 이번 기술은 원하는 RNA에 선택적으로 아세틸화를 가할 수 있어 RNA 아세틸화의 기능을 정확하고 세밀하게 연구할 수 있는 길을 열였다”며, “이번에 개발한 RNA 화학 변형 기술은 향후 RNA 기반 치료제 및 생체 내 RNA 작동을 조절하는 도구로 폭넓게 활용될 수 있을 것”이라고 전했다.
우리 대학 생명과학과 유지환 박사과정이 제1 저자로 수행한 이 연구는 국제 학술지 ‘네이처 케미컬 바이올로지 (Nature Chemical Biology)’에 2025년 6월 2일 자로 게재됐다.
(논문명: Programmable RNA acetylation with CRISPR-Cas13, Impact factor: 12.9, DOI: https://doi.org/10.1038/s41589-025-01922-3)
한편, 이번 연구는 삼성미래기술육성재단과 한국연구재단 바이오·의료기술개발사업의 지원을 받아 수행됐다.
빛으로 기억 조절해 정신질환 치료 가능성 열어
우리 뇌에 과도한 기억이 형성되면 극심한 공포와 관련된 기억이 제대로 소멸되지 않아 발생하는 PTSD 같은 정신질환의 원인이 된다고 한다. 우리 연구진이 빛으로 단백질의 활성을 조절하는 광유전학 기술을 개발하고 이를 통해 과도한 기억 형성을 억제해 PTSD의 발생을 줄일 수 있는 가능성을 열어 화제다.
우리 대학 생명과학과 허원도 교수 연구팀이 뇌에서 기억 형성을 조절하는 새로운 메커니즘을 밝혀냈다. 연구팀은 다양한 뇌 신경전달물질들에 의해 활성화되는 대표적인 세포내 신호전달분자효소인 PLCβ1 단백질*에 집중했다. 이번 연구는 기억 형성과 소멸을 조절하는 데 중요한 역할을 하는 단백질(PLCβ1)의 기능을 규명하였으며, PTSD와 같은 과도한 기억 형성에 의한 정신질환의 새로운 분자적 기전을 밝히는데 기여했다.
*PLCβ1 단백질: 인산지질 가수분해효소 C 베타 1
우리 뇌는 매일 다양한 경험을 통해 새로운 기억을 형성하고 소멸시킨다. 기억 형성과정은 해마라는 뇌 부위에서 이루어지며, 여기서는 양성적 신호와 음성적 신호가 균형을 맞추어 최적의 기억 형성을 유지한다. 그러나 양성 조절 인자가 부족하면 기억 형성에 문제가 생기고, 음성 조절 인자가 손상되면 과도한 기억이 형성된다. 이러한 과도한 기억 형성은 PTSD와 같은 정신질환의 원인이 될 수 있다.
허원도 교수 연구팀은 세계 최초로 단백질(PLCβ1)이 해마에서 기억 억제자로 작용하여 과도한 기억 형성을 억제하는 중요한 역할을 하는 등 동 단백질이 해마에서 특히 중요한 역할을 한다는 것을 밝혔다.
연구팀은 단백질(PLCβ1)을 결핍시킨 마우스에서 과도한 기억 형성과 공포 반응이 증가하는 것을 발견하였고, 반대로 동 단백질이 과발현하거나 광유전학으로 활성화시키면 과도한 공포 반응이 억제되는 것을 확인하였다. 이는 동 단백질이 기억 형성 초기 단계에서 중요한 역할을 하며, 적절한 기억 형성을 유도함을 의미한다.
연구팀은 빛으로 제어하는 광유전학 기술을 개발하여 단백질(PLCβ1)의 기능을 정밀하게 조절하였다. 이 기술은 빛을 이용해 특정 단백질을 활성화하거나 비활성화할 수 있어, 뇌의 특정 부위에서 일어나는 신경 활동을 정밀하게 제어할 수 있다. 이를 통해 연구팀은 동 단백질이 기억 형성 초기 단계에서 중요한 역할을 한다는 것을 입증하였다. 이는 광유전학 기술이 신경 과학 연구뿐만 아니라 PTSD와 같은 정신질환 원인 규명 및 치료에도 혁신적인 도구가 될 수 있음을 보여주는 결과이다.
단백질(PLCβ1) 결핍 마우스에서 나타난 과도한 공포 반응은 PTSD 환자의 증상과 유사하다. 연구팀은 동 단백질 활성화가 극심한 스트레스로 인해 과도한 공포 기억이 형성되는 마우스 모델에서 공포 반응을 감소시킬 수 있음을 확인하였다. 이는 동 단백질이 PTSD와 같은 정신질환의 원인에 중요한 역할을 하며 동 단백질을 조절함으로써 과도한 기억 형성을 억제해 PTSD의 발생을 줄일 수 있는 가능성이 열린 것이다.
교신저자인 허원도 교수는 "이번 연구는 단백질(PLCβ1)이 해마에서 기억 형성 초기 단계에서 중요한 역할을 한다는 것을 밝혀냈으며, 이는 PTSD와 같은 정신질환의 새로운 치료 가능성을 제시한다. 그리고 동 단백질의 기능을 정밀하게 조절함으로써 과도한 공포 기억 형성을 억제할 수 있는 방법을 개발할 수 있을 것으로 기대되며, 이는 정신질환 치료에 혁신적인 돌파구가 될 수 있을 것이다"고 말했다. 아울러 “실제 치료에 적용되거나 동 단백질 신호 억제가 다른 뇌 기능에 어떤 영향을 미치는지, 그리고 인간에게 적용 가능한지에 대한 임상 연구가 추가적으로 필요하다.” 고 첨언했다.
생명과학과 이진수 박사가 제1 저자로 수행한 이번 연구는 저명 국제 학술지 ‘사이언스 어드밴스(Sciences Advances)’2024년 7월호 인쇄판에 게재될 예정이며, 2024년 6월 28일자로 온라인판에 게재됐다. (논문명: Phospholipase C beta 1 in the dentate gyrus gates fear memory formation through regulation of neuronal excitability). (Impact Factor: 13.6). (DOI: 10.1038/s41592-023-02122-4)
한편, 이번 연구는 과학기술정보통신부 중견연구사업, KAIST 글로벌특이점 사업의 지원을 받아 수행됐다.
RNA 유전자 가위 정밀제어기술로 유전자 치료 성큼
최근 유전자 치료제 개발에 있어 중요한 역할을 하는 유전자 가위(CRISPR/Cas) 기술은 DNA 편집을 통해 영구적인 치료 효과를 보일 수 있으나, 비표적 효과에 의한 생체 내 부작용에 의한 돌연변이가 발생하였을 때, 대체할 방안이 불명확하다. DNA 편집의 잠재적인 위험성을 극복하여 특이적으로 인식하고 조절할 수 있는 RNA 대상으로 하는 유전자 가위 시스템이 주목받고 있다.
우리 대학 생명과학과 허원도 교수 연구팀이 세계 최초로 RNA 유전자 가위 기술 (CRISPR/Cas13)의 활성을 화학 유전학 및 광유전학으로 조절해 시간 및 공간적으로 표적 RNA의 염기 편집을 수행하는 기술을 개발했고, 동물 모델에서의 RNA 염기 편집 효과를 입증했다고 7일 밝혔다.
허원도 교수 연구팀은 구조가 알려지지 않은 단백질의 구조를 재구조화해, 화학적 및 광유전학적으로 조절 가능한 Cas13 단백질 조각을 예측하고 개발하는 데 성공했다. 이를 통해 개발된 에디터 기술로 RNA 분해 및 RNA 염기 편집을 실시간으로 유도할 수 있으며, RNA 염기 편집의 활성을 가역적으로 조절할 수 있음을 확인했다. 또한, 기존 연구자들이 실험에 이용하던 세포모델에서 더 나아가 세계 최초로 실험 쥐 모델에 해당 시스템을 적용해 광유전학적으로 RNA 염기 편집이 효과적으로 일어나는 것을 입증했다.
이번 연구는 유전자 가위 시스템을 활용한 유도 가능한 RNA 조절 시스템 개발로, 질병과 관련된 돌연변이를 표적으로 하는 RNA 기반 치료법의 발전 및 세포 내 RNA 기반 연구의 적용에 기여할 것으로 기대된다. 특히 생체 내 전달 목적으로 주로 사용되는데 연구팀은 RNA 대상 편집 시스템에서 단백질의 상대적으로 큰 크기를 유전체 전달에 있어서 임상적 적용에 한계점을 가지고 있다는 점을 감안하여 DNA 크기 제한을 분할 시스템으로 극복하고, 실험 쥐의 기관 내에서 다양한 모델 시스템 구축을 통해 생체 내 RNA 연구의 적용 범위를 확장할 수 있다.
연구를 주도한 허원도 교수는 “재결합이 가능한 분할 단백질 Cas13 조각을 개발해, 화학적 및 광유전학적으로 특정 시공간에서 정밀하게 조절되는 RNA를 실험적으로 확인했다. 이 기술은 그동안 실험적 한계로 인해 어려웠던 복잡한 RNA 연구를 촉진할 것으로 기대된다.라고 말했다.” 아울러 “유전자 가위 시스템을 활용한 유도 가능한 RNA 조절 시스템 개발로, 질병과 관련된 돌연변이를 표적으로 하는 RNA 기반 치료법의 발전 및 세포 내 RNA 기반 연구의 적용에 기여할 것으로 기대된다”라고 전했다.
우리 대학 생명과학과 유정혜 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 2024년 1월 22일 字 온라인판에 게재됐다. (논문명: Programmable RNA base editing with photoactivatable CRISPR-Cas13). (Impact Factor: 17.694). (DOI: https://doi.org/10.1038/s41467-024-44867-2)
한편, 이번 연구는 삼성미래기술육성재단과 정부의 재원으로 한국연구재단 바이오·의료기술개발사업의 지원을 받아 수행됐다.
기억하고 인지하는 과정을 실시간 관찰하다
우리 뇌 속에는 약 860억 개의 신경세포와 신경세포 간의 신호를 주고받아 우리의 인지, 감정, 기억 등과 같은 다양한 뇌 기능을 조절하도록 돕는 600조 개에 달하는 시냅스가 존재한다. 흥미롭게도 노화나 알츠하이머병과 같은 질병 상황에서 시냅스는 감소하는 것으로 알려져, 시냅스에 관한 연구가 주목받고 있지만 아직 시냅스의 구조 변화를 실시간으로 관찰하는 데에는 한계가 있다.
우리 대학 생명과학과 허원도 교수 연구팀이 세계 최초로 시냅스의 형성과 소멸 및 변화를 실시간으로 관찰할 수 있는 기술 개발에 성공했다고 9일 밝혔다.
허원도 교수 연구팀은 형광 단백질(dimerization-dependent fluorescent protein, ddFP)을 시냅스와 결합시켜 신경세포 간의 시냅스 연결 과정을 실시간으로 관찰할 수 있는 기술을 개발했다. 이 기술을 시냅스(Synapse)와 스냅샷 (Snapshot)을 조합한 시냅샷(SynapShot)이라고 이름 지었고 기존에는 구현하기 어려웠던 시냅스 형성과 소멸 그리고 역동적인 변화 과정을 실시간으로 추적하고 관찰하는데 성공했다.
허원도 교수 연구팀은 초록과 빨강 형광을 띠는 시냅샷을 디자인해 두 개의 서로 다른 신경세포와 연결된 시냅스를 쉽게 구별하여 관찰할 수 있었다. 또한, 빛으로 분자의 기능을 조절할 수 있는 광유전학 기술과 융합하여 신경세포의 특정 기능을 빛으로 조절함과 동시에 시냅스의 변화를 관찰하는 데 성공했다.
허원도 교수 연구팀이 개발한 시냅샷은 미국 존스홉킨스 의대 권형배 교수 연구팀과 공동연구를 통해 살아있는 생쥐에게 시각적 구별 훈련, 운동 및 마취 등 여러 상황을 유도하고 각 과정에서 시냅스의 변화를 실시간으로 관찰해 각각의 시냅스가 상당히 빠르고 역동적으로 변화될 수 있음을 보였다. 이는 살아있는 포유류의 시냅스 변화를 세계 최초로 관찰한 것이다.
교신저자 허원도 교수는 “우리 연구팀이 국내외 연구팀과 공동연구를 통해 시냅샷 기술로 과거에는 구현하기 어려웠던 시냅스의 빠르고 역동적인 형성과 변화를 직접 관찰할 수 있는 가능성을 열었으며, 이 기술은 뇌과학 연구분야의 연구방법론에 혁신을 가져올 것으로 예상되며 뇌 과학의 미래를 밝히는 중요한 역할을 할 것으로 기대된다”고 말했다.
생명과학과 손승규(박사과정), 이진수(박사과정), 존스홉킨스 의과대학 정강훈 박사가 공동 제1 저자로 수행한 이번 연구는 저명 국제 학술지 ‘네이처 메쏘드(Nature Methods)’2024년 2월호 인쇄판에 게재될 예정이며, 2024년 1월 8일자로 온라인판에 게재됐다. (논문명: Real-time visualization of structural dynamics of synapses in live cells in vivo). (Impact Factor: 47.99). (DOI: 10.1038/s41592-023-02122-4)
한편, 이번 연구는 KAIST 중견연구자지원사업, KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
RNA 유전자 가위 기술로 코로나바이러스 싹둑
엔데믹(endemic)으로 지정된 코로나 19 바이러스(이하 SARS-CoV-2)는 변이가 매우 빈번하고 빠른 RNA 바이러스이다. 따라서 전 세계 연구자들은 신·변종 바이러스 출현에 따른 새로운 팬데믹에 대비하기 위해 범용 코로나 바이러스 감염병 치료제 개발에 몰두하고 있다.
우리 대학 생명과학과 허원도 교수 연구팀과 전북대 강상민 교수 연구팀이 공동연구를 통해 세계 최초로 RNA 유전자 가위 기술을 이용해 RNA 바이러스 유전체 내 슈도낫 부위를 타겟해 바이러스 증식을 강력하게 차단할 수 있는 핵심 타겟부위를 발견했고, 전북대학교 인수공통감염병 연구소와의 협업을 통해 동물모델에서 COVID-19 치료 효과를 입증했다고 1일 밝혔다.
우리 대학 자연과학연구소 유다슬이 연구조교수, 전북대학교 한희정 박사과정, KAIST 생명과학과 유정혜 박사과정, KAIST 생명과학과 김지혜 선임연구원이 공동 제 1저자로 수행한 이번 연구는 저명 국제 학술지 ‘몰레큘러 테라피 (Molecular Therapy)’ 2023년 3월호에 온라인으로 출판됐다. (논문명: Pseudoknot-targeting Cas13b combats SARS-CoV-2 infection by suppressing viral replication). (Impact Factor: 12.91). (DOI: https://doi.org/10.1016/j.ymthe.2023.03.018)
SARS-CoV-2 바이러스는 세포 내 감염 후 매우 빠른 속도로 바이러스 단백질을 복제하고 증식하여 숙주 세포의 기능을 완전히 망가뜨린다. RNA 바이러스 유전체를 직접 분해해 바이러스 증식을 억제하는 시도는 이전부터 있어왔으나 이런 빠른 코로나 증식을 완전히 막기에는 역부족이었다.
연구팀은 RNA 유전자 가위 기술로 코로나 바이러스 내 유전자 발현 조절 중추 역할을 하는 슈도낫 부위를 타겟함으로써 99.9퍼센트의 바이러스 증식 억제 효과가 있음을 입증했다. 이는 슈도낫 부위가 코로나 바이러스의 가장 취약한 급소임을 보여주는 결과이기도 하다.
본 기술은 mRNA 기반 유전자 치료제 전달하는 방식으로 DNA 기반 유전자 치료제에 비해 전달 효율이 매우 높으며 치료제 발현 시간 또한 매우 빠르다. 연구진이 제작한 mRNA 기반 치료제 전달로 감염 세포에 2시간 이내, 감염 동물에 6시간 이내에 RNA 유전자 가위 기술 발현을 유도할 수 있었다.
연구진이 타겟한 슈도낫 부위는 MERS, SARS-CoV 유전체 내에서도 보존성이 높은 염기서열을 가졌으며, SARS-CoV-2 변이체 (알파, 베타, 감마, 델타, 오미크론) 모두에서 동일한 염기서열을 가졌다. 연구진은 전북대학교 인수공통연구소와의 공동연구를 통해 SARS-CoV-2 (Hu-1) 뿐만 아니라 변이체 증식 또한 매우 효과적으로 억제됨을 보여주며 해당 기술의 범용성을 증명하였다. 또한 SARS-CoV-2 감염 쥐 모델에 해당 치료제 기술이 투여된 쥐에서 뚜렷한 COVID-19 치료 효과를 입증했다.
유다슬이 연구조교수는 “이번 연구 결과는 바이러스 유전체 중 단백질을 구성하는 유전자가 아닌 단백질 발현을 조절하는 유전자를 세계 최초로 타겟 했다는 점과, 그것이 다른 유전자 타겟 부위보다 바이러스 증식 억제 효율이 뛰어났다는 점에서 중요한 의미를 갖는다”고 말했다.
허원도 교수는 “우리 RNA유전자가위 연구는 본래 바이러스 감염병 치료 목적으로 시작하지는 않았지만 팬데믹이라는 세계적 재난 상황에서 기여하고자 연구를 시작했고, 전북대 인수공통감염병연구소와 공동연구를 통해 치료 효과를 입증할 수 있었다. 또한 mRNA 백신으로 인류가 빠르게 팬데믹을 극복했듯이 mRNA 치료제 개발로 미래에 출현할 바이러스 감염병에 신속한 대응을 하도록 본 기술을 발전시키겠다”며 앞으로의 계획을 밝혔다.
한편, 이번 연구는 KAIST 코로나대응 과학기술뉴딜사업과 보건복지부 감염병 예방 치료기술개발 사업의 지원을 받아 수행됐다.
빛으로 뇌 기능, 행동, 감정을 자유롭게 조절한다
우리 대학 생명과학과 허원도 교수 연구팀은 빛으로 뇌 기능 및 행동을 자유자재로 조절하는 광유전학 기술인 ‘Opto-vTrap(옵토-브이트랩)’을 개발했다. 나아가 동물실험을 통해 뇌 활성 뿐 아니라 활동과 감정까지 조절할 수 있음을 확인했다.
뇌 활성은 신경세포와 신경교세포와 같은 뇌세포들이 서로 신호를 주고받으며 조절된다. 이 같은 상호작용은 뇌 세포 내 ‘소낭’안에 담긴 신경전달물질 분비를 통해 이루어진다. 소낭이 뇌 활성을 조절하는 사령관인 셈이다. 뇌 활성 조절은 뇌 연구를 위한 필수 기술이다. 뇌의 특정 부위나 세포의 활성을 촉진 및 억제해보면 특정 뇌 부위가 담당하는 기능, 여러 뇌 부위 간 상호작용의 역할, 특정 상황에서 다양한 뇌세포의 기능 등 특정 상황에서 뇌 작동이 어떠한 원리로 일어나는지 밝힐 수 있기 때문이다.
그러나 기존 뇌 활성 조절 기술은 원하는 시점에 특정 뇌세포의 활성을 자유롭게 조절하기 어려웠다. 지금까지는 세포 전위차 조절 방식을 사용하였는데, 이는 주변 환경의 산성도를 변화시키거나 원하지 않는 다른 자극을 유발할 뿐만 아니라 전위차에 반응하지 않는 세포에는 사용하지 못하는 한계가 있었다. 이번에 개발한 Opto-vTrap 기술은 세포 소낭을 직접 특이적으로 조절할 수 있어 원하는 시점에 다양한 종류의 뇌세포에서 이용이 가능하다.
연구진은 신경전달물질 분비를 직접 조절하고자 세포에 빛을 쪼이면 순간적으로 내부에 올가미처럼 트랩을 만드는 자체 개발 원천기술을 응용, 소낭에 적용했다. Opto-vTrap을 발현하는 세포나 조직에 빛(청색광)을 가하면 소낭 내 광수용체 단백질들이 엉겨 붙으며 소낭이 트랩 안에 포획되고 신경전달물질 분비가 억제된다. 요컨대 Opto-vTrap으로 소낭의 신호전달물질 분비를 직접 제어하여 뇌 활성을 자유롭게 조절하는 것이다. 연구진은 세포와 조직실험에서 나아가 Opto-vTrap 바이러스를 이용한 동물실험을 통해 뇌세포 신호전달 뿐만 아니라 기억·감정·행동도 조절 가능함을 확인하였다.
Opto-vTrap을 이용하면 뇌의 여러 부위간 복합적 상호작용 원리를 밝히고, 뇌세포 형태별 뇌 기능에 미치는 영향을 연구하는 데 유용하게 활용될 것으로 기대된다.
허원도 교수는 “Opto-vTrap은 신경세포와 신경교세포 모두에 잘 작동되기에 향후 다양한 뇌과학 연구 분야에 이용되리라 기대한다” 며 “앞으로 본 기술을 활용하여 특정 뇌세포의 시공간적 기능 연구를 진행하고자 한다.”고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 중견연구과제 및 KAIST 글로벌 특이점 연구사업의 지원을 받아 수행됐다.
이번 연구 결과는 뇌 과학 학술지 뉴런 (Neuron, IF:17.173) 에 12월 1일(수) 1시(한국시간) 게재됐다.
머리에 빛을 비춰 신경세포 재생과 공간기억 향상
뇌질환 상태에서 신경재생으로 일시적인 기억향상이 일어나는 기전이 밝혀졌다.
우리 대학 생명과학과 허원도 교수 연구팀은 머리에 빛을 비춰 뇌신경세포 내 Fas 수용체의 활성을 조절함으로써 신경재생과 공간기억 능력이 향상됨을 보였다.
Fas 수용체는 허혈성 뇌질환, 염증성 뇌질환, 퇴행성 신경질환 등 다양한 대뇌질환에 걸린 경우 발현이 유도되는 단백질이다. 일반적으로는 세포를 죽음에 이르게 하지만, 신경계의 다양한 세포들에서는 세포증식 관련 신호전달 경로를 활성화시켜 세포를 재생시킨다. 특히, 뇌질환에 걸린 경우 대뇌 해마의 신경재생에 Fas 수용체가 관련되어 있다는 사실이 알려져 왔으나, 연구방법의 한계로 세부적인 기전에 대해서는 아직 자세히 알려진 바가 없다. 또한, 질환이 있는 뇌에서 해마가 관장하는 공간기억이 Fas 단백질에 의해 어떻게 영향받는지에 대해서도 논란이 되어 왔다.
연구팀은 광수용체 단백질의 유전자에 Fas 수용체 단백질의 유전자를 결합시킴으로써 청색광을 쬐어주면 Fas 단백질의 활성이 유도되는 옵토파스(OptoFAS) 기술을 개발했다. 살아있는 생쥐 대뇌에 다양한 시간동안 빛을 쬐어주면서 시공간적으로 Fas 수용체 단백질의 활성을 조절함으로써 대뇌 해마에서 여러 신호전달 경로들이 순차적으로 활성화되고, 그 결과로 신경재생과 공간기억 능력이 향상된다는 것을 확인했다.
옵토파스(OptoFAS) 기술은 빛을 이용하여 세포의 기능을 조절하는 광유전학(Optogenetics) 기술이다. 배양시킨 세포나 살아있는 생쥐 머리에 청색광을 쬐어주면 광수용체 단백질 여러 개가 결합되며, 이 단백질 복합체가 하위 신호전달경로들을 활성화시킨다. 생체 내에 광섬유를 삽입하여 원하는 시간에 빛을 뇌 조직 내로 전달하는 방식으로 선택적으로 단백질을 활성화시킬 수 있다.
연구팀은 빛을 이용해 대뇌 해마의 치아이랑에 존재하는 미성숙신경세포에서 옵토파스를 활성화시키고, 빛을 쬐어주는 시간에 따라 미성숙신경세포와 신경줄기세포에서 각각 서로 다른 하위 신호전달경로가 활성화됨을 관찰했다. 또한 이 현상에 특정 뇌유래 신경성장인자가 관여함을 밝혀내었다. 반복적으로 충분한 시간동안 빛을 쬐어주면 해마 치아이랑의 신경줄기세포가 증식하는 성체 신경재생이 관찰되었으며, 실험 대상 쥐에서는 일시적으로 공간기억 능력이 향상됨을 밝혔다.
옵토파스 기술을 이용하면 약물을 처리하거나 유전자변형 쥐를 사용하였을 때 발생하는 여러 부작용이 없이 빛 자극만으로 쥐의 생리현상에 지장을 주지 않으면서 뇌신경세포에서 Fas 단백질의 활성을 실시간으로 조절할 수 있다. 질환이 있는 뇌에서 Fas 단백질이 활성화되어 질병에 맞서 대뇌의 기능을 보호하는 여러 가지 역할을 한다는 사실을 생각해볼 때, 향후 세포 수준을 물론 개체 수준까지 뇌질환 상태에서의 신경행동적인 변화를 규명하는 연구에 활용될 것으로 기대한다.
허원도 교수는 “옵토파스(OptoFAS) 기술을 이용하면 빛만으로 살아있는 개체의 신경세포 내에서 단백질의 활성과 신호전달 경로를 쉽게 조절할 수 있다”며 “이 기술이 뇌인지 과학 연구를 비롯해 향후 대뇌질환 치료제 개발 등에 다양하게 적용되길 바란다”고 말했다.
이번 연구결과는 국제 학술지 사이언스 어드밴시즈(Science Advances, IF 12.80)에 4월 23일 오전 3시(한국시간) 온라인 게재됐다.
빛으로 RNA 이동과 단백질 합성 조절한다
빛으로 세포 내 특정 RNA 이동과 단백질 합성을 조절할 수 있는 기술이 개발됐다. 생명과학과 허원도 교수 연구팀이 빛을 이용해 유전정보를 전달하는 전령RNA와 단백질을 생성하는 리보솜의 결합을 제어해 단백질 합성을 조절하는데 성공했다.
이번 연구성과는 네이처 셀 바이올로지(Nature Cell Biology, IF 17.728)에 2월 18일 오전 1시(한국시간)자 온라인 판에 실렸으며, Nature Reviews Genetics에 하이라이트 논문으로 소개됐다.
DNA의 유전정보는 RNA를 거쳐 단백질로 전달된다. 이때 중간에서 유전정보를 전달하는 RNA를 ‘전령RNA’라고 한다. 단백질 생성공장인 리보솜이 전령RNA의 유전정보를 읽어 단백질을 합성한다. 단백질 합성에 있어 전령RNA는 DNA 유전정보의 중간 전달자, 리보솜은 생성공장, 단백질은 완성품인 셈이다.
이전에는 화학물질을 처리해 전령RNA를 조절하는 방법으로 모든 전령RNA를 한꺼번에 조절하기 때문에 특정 종류의 전령RNA만을 세밀하게 조절하기 어려웠다. 이번 연구에서는 살아있는 세포에 청색광을 비춰줌으로써 세포 내 특정 전령RNA 이동 및 단백질 합성을 시공간 특이적으로 조절하는 mRNA-LARIAT 광유전학 기술을 개발했다.
연구팀은 이전 연구로 개발한 라리아트 올가미(LARIAT, Light-Activated Reversible Inhibition by Assembled Trap) 기술과 RNA 이미징 기술을 융합해 mRNA-LARIAT 기술을 개발했다. mRNA-LARIAT 광유전학 기술을 이용하면 빛의 유무에 따라 라리아트 올가미에 전령RNA를 가두거나 분리하고, 이를 실시간으로 관찰하는 것이 가능하다.
연구팀은 헬라 세포에 청색광을 비춰주면 라리아트 올가미에 전령RNA가 가둬지면서 리보솜과 격리되고 단백질 합성이 감소함을 관찰했다. 이어 청색광을 차단하면 라리아트 올가미로부터 전령RNA가 빠져나오면서 리보솜과 단백질 합성을 다시 시작함을 확인했다. 이는 mRNA-LARIAT 광유전학 기술로 빛의 유무에 따라 매우 빠르고 가역적으로 단백질 합성을 조절할 수 있음을 의미한다.
대부분 단백질은 전령RNA와 리보솜에 의해 합성된 후, 각 단백질이 작용하는 위치로 이동한다. 하지만 전령RNA가 라리아트 올가미에 가둬지면 전령RNA가 향후 단백질이 작용하는 위치까지 이동이 멈추고 단백질 합성이 차단된다. 전령RNA는 단백질보다 비교적 작은 분자로, 세포 내 이동이 더 효율적이고 빠르다. 이처럼 mRNA-LARIAT 광유전학 기술로 전령RNA 이동 및 단백질 합성을 빛으로 조절하면 살아있는 세포에서의 RNA의 위치 및 합성되는 신생 단백질의 기능을 효율적으로 연구할 수 있게 되었다.
연구팀은 베타액틴(β-actin) 단백질 합성에 관여하는 전령RNA에 mRNA-LARIAT 기술을 적용했다. 베타액틴 단백질 합성에 관여하는 전령RNA에 청색광을 비추니 세포 골격 구성 및 이동 기능이 제대로 이뤄지지 않음을 관찰했다. 또한 베타액틴 단백질 합성 효율이 최대 90%까지 감소됨을 확인했다.
허원도 교수는 “mRNA-LARIAT 광유전학 기술을 활용하면 암세포, 신경세포 등 다양한 세포 내 전령RNA 이동 및 단백질 합성을 빛으로 조절할 수 있다”라며 “앞으로 암세포 전이, 신경질환 등 전령 RNA 관련 질병 연구에 응용 가능할 것이다”라고 말했다.