본문 바로가기
대메뉴 바로가기
KAIST
뉴스
유틸열기
홈페이지 통합검색
-
검색
ENGLISH
메뉴 열기
%EB%94%A5%EB%9F%AC%EB%8B%9D
최신순
조회순
전산학부 학사과정 여경민, 세계적 권위 AI 학술대회 ICLR 논문 발표
우리 대학 전산학부 여경민 학부과정 학생과 김재훈 박사과정 학생이 성민혁 교수(Visual AI Group) 지도를 받아 공동으로 개발한 새로운 이미지 생성 기술 ‘StochSync’가 세계 최고 수준의 인공지능(AI) 국제 학술대회 ‘ICLR 2025(International Conference on Learning Representations)’에서 채택돼 발표됐다. ICLR은 딥러닝 및 인공지능 분야에서 가장 영향력 있는 학술대회 중 하나로, 전 세계 AI 연구자들이 최신 기술과 성과를 공유하는 대표 행사다. 특히 학부생이 제1저자로 주요 학회에 논문을 발표하는 것은 드문 사례로, 이번 성과는 KAIST의 우수한 연구 역량과 인재 양성 시스템을 다시 한번 입증했다. StochSync는 사전 훈련된 AI 모델을 활용해 기존 평면 이미지를 넘어, 360도 파노라마나 3D 물체 표면의 텍스처처럼 복잡한 형태의 이미지를 별도의 추가 학습 없이도 간편하게 생성할 수 있는 기술이다. 기존에는 이러한 복잡한 이미지 생성을 위해 많은 훈련 데이터나 복잡한 전처리 과정이 필요했으나, StochSync는 이를 대폭 간소화하고 동시에 고품질 결과를 구현했다. 예를 들어 자동차 내부 디자인이나 가구 표면 텍스처 등을 실제 제작에 앞서 사실감 있게 시뮬레이션할 수 있어, 제품 설계 초기 단계에서 빠르고 효율적인 디자인 검토가 가능하다. 해당 기술은 VR, 게임, 산업 디자인 등 다양한 분야에 폭넓게 응용될 수 있다. StochSync의 가장 큰 특징은 정교한 이미지 디테일과 시점 간 일관성을 동시에 확보할 수 있다는 점이다. 기존 이미지 생성 모델들은 고해상도 디테일과 여러 시점 간의 일관성을 동시에 만족시키기 어려웠으나, StochSync는 서로 다른 원리에 기반한 두 기법을 융합한 새로운 방법론을 제시함으로써 이 문제를 해결했다. 이번 연구의 제1저자인 여경민 학생은 2023년 겨울부터 KAIST Visual AI Group 인턴으로 연구에 참여해 왔으며, 김재훈 박사과정 학생과 협업해 실험 설계, 분석, 논문 작성 전반을 주도했다. 여 학생은 “연구 과정에서 여러 기술적 난관을 극복하며 AI 기술의 실제 활용 가능성을 확인할 수 있었다”며 “앞으로 다양한 산업 분야에 적용될 수 있기를 기대한다”고 소감을 밝혔다. 여경민 학생은 이번 ICLR 2025 발표 외에도 2024년 열린 국제 머신러닝 학술대회 NeurIPS 2024에서 논문 두 편의 공저자로 참여하고, 포스터 발표를 진행하는 등 학부생으로서는 드문 연구 성과를 이어가고 있다. ICLR 2025 컨퍼런스는 지난 4월 싱가포르에서 개최되었으며, 여경민 학생은 포스터 및 워크숍 세션을 통해 세계 각국 연구자들과 활발한 학술 교류를 진행했고, 많은 호응을 얻었다. 전산학부 관계자는 “학부생이 세계 최고 수준의 학회에서 주요 성과를 발표한 것은 매우 고무적인 일”이라며 “앞으로도 세계를 선도하는 AI 인재 양성과 연구 역량 강화에 최선을 다할 것”이라고 밝혔다. 해당 논문과 프로젝트에 대한 자세한 정보는 아래 링크에서 확인할 수 있다. 논문 링크: https://arxiv.org/abs/2501.15445 프로젝트 웹사이트: https://stochsync.github.io GitHub: https://github.com/KAIST-Visual-AI-Group/StochSync
2025.06.09
조회수 1898
암 조직 ‘3D·가상염색’ 혁신기술로 절개 없이 관찰 가능
기존에 암 조직을 얇게 절단하여 염색한 뒤 관찰하던 전통 방식에서 벗어나, 우리 대학과 국제공동연구진이 첨단 광학 기술을 활용해 절개없이 암 조직의 3차원 구조를 인공지능 기반 딥러닝 알고리즘을 접목시켜 실제처럼 가상 염색 영상으로 구현하는 기술을 성공하여 향후 차세대 비침습 병리 진단의 혁신을 기대할 수 있게 됐다. 물리학과 박용근 교수 연구팀이 연세대 강남세브란스병원 신수진 교수팀, 미국 메이오클리닉(Mayo Clinic) 황태현 교수팀, 토모큐브 인공지능 연구팀과의 공동연구를 통해, 별도의 염색 없이도 암 조직의 3차원 구조를 생생하게 보여줄 수 있는 혁신적인 기술을 개발했다고 26일 밝혔다. 200여년간 사용되어 온 기존 병리학에서는 암 조직을 현미경으로 관찰하던 방식은 3차원으로 이루어진 암 조직의 특정 단면만을 보여주기 때문에, 세포간의 입체적 연결 구조나 공간적 배치를 파악하는데 한계가 있었다. 이에 연구팀은‘홀로토모그래피(Holotomography, HT)’라는 첨단 광학 기술을 활용해 조직의 3차원 굴절률 정보를 측정하고, 여기에 인공지능 기반 딥러닝 알고리즘을 접목시켜 마치 가상의 염색(H&E)* 이미지 생성하는데 성공했다. * H&E(Hematoxylin & Eosin): 병리 조직을 관찰할 때 가장 널리 사용되는 염색법으로, 세포의 핵은 헤마톡실린(Hematoxylin)으로 파란색, 세포질은 에오신(Eosin)으로 분홍색으로 염색된다. 연구팀은 이 기술이 생성한 영상이 실제 염색된 조직 영상과 매우 유사하다는 점을 정량적으로 입증했으며, 다양한 장기와 조직에서도 일관된 성능을 보여줌으로써 차세대 병리 분석 도구로서의 범용성과 신뢰성을 입증했다. 또한, 토모큐브사의 홀로토모그래피 장비를 활용해 한국과 미국의 병원 및 연구기관과 공동으로 기술 실현 가능성을 검증함으로써, 이 기술이 실제 병리 연구 현장에 본격적으로 도입될 수 있음을 보여주었다. 박용근 교수는 “이번 연구는 병리학의 분석 단위를 2차원에서 3차원으로 확장한 매우 의미 있는 성과”라며, “앞으로 미세 종양 환경 내에서 암 종양의 경계나 주변 변역 세포들의 공간 분포를 분석할 수 있는 등 다양한 생의학 연구와 임상 진단에 널리 활용될 수 있을 것”이라고 전했다. 이번 연구는 박주연 석박사통합과정 학생이 제1 저자로 참여했으며, 세계적 학술지 네이처 커뮤니케이션즈(Nature Communications)에 5월 22일자로 온라인 게재되었다. (논문명: Revealing 3D microanatomical structures of unlabeled thick cancer tissues using holotomography and virtual H&E staining. https://doi.org/10.1038/s41467-025-59820-0) 본 연구는 한국연구재단 리더연구사업, 한국산업기술진흥원의 글로벌산업기술협력센터사업, 보건산업진흥원의 지원을 받았다.
2025.05.26
조회수 2555
AI 기반 효소 발굴하여 새로운 미생물 설계 가능
효소는 세포 내에서 일어나는 생화학적 반응을 촉매하는 단백질로, 세포의 대사 과정에서 핵심적인 역할을 수행한다. 이에 따라 새로운 효소의 기능을 규명하는 것은 미생물 세포공장 구축에서 핵심적인 과제다. KAIST 연구진이 인공지능(AI)을 활용해 자연에 존재하지 않는 새로운 효소를 설계함으로써, 미생물 세포공장 구축을 가속화하고 신약·바이오 연료 등 차세대 바이오산업의 개발 가능성을 크게 높였다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 AI를 활용한 효소 기능 예측 기술의 발전 과정과 최신 동향을 정리하고, AI가 새로운 효소를 찾고 설계하는데 어떤 역할을 해왔는지 분석하여 ‘인공지능을 이용한 효소 기능 분류’를 발표했다. 이상엽 특훈교수 연구팀은 이번 연구에서 머신러닝(Machine learning)과 딥러닝(Deep learning)을 활용한 효소 기능 예측 기술의 발전 과정을 체계적으로 정리·분석하여 제공했다. 초기의 서열 유사성 기반 예측 기법에서부터 합성곱 신경망, 순환 신경망, 그래프 신경망, 그리고 트랜스포머(Transformer) 기반 대규모 언어 모델까지 다양한 AI 기법이 효소 기능 예측 연구에 접목된 사례를 다루며, 이들 기술이 단백질 서열에서 의미 있는 정보를 어떻게 추출하고, 예측 성능을 극대화하는지를 분석했다. 특히, 딥러닝 기술을 활용한 효소 기능 예측은 단순한 서열 유사성 분석을 넘어, 구조적·진화적 정보 등 아미노산 서열에 내재된 효소의 촉매 기능과 관련된 중요한 특성을 자동으로 추출함으로써 보다 정밀한 예측이 가능하다는 점이 강조됐다. 이는 기존의 생명정보학적 접근법과 비교해 인공지능 모델이 가지는 차별성과 장점을 부각하는 중요한 부분이다. 또한, 생성형 인공지능 모델의 발전에 기반하여, 기존 효소 기능 예측을 넘어 자연계에 존재하지 않는 새로운 기능을 가진 효소를 생성하는 기술이 미래 연구 방향이 될 것으로 제시했다. 이러한 AI 기반 효소 예측 및 설계 기술의 지속적인 발전은 향후 바이오 산업과 생명공학 연구의 방향성에 큰 변화를 가져올 것으로 전망했다. 공동 제 1저자인 생명화학공학과 김하림 박사과정생은 “AI 기반 효소 기능 예측 및 효소 설계는 대사공학, 합성 생물학 및 헬스케어 등 다양한 분야에서 매우 중요”하다고 말했다. 이상엽 특훈교수는“AI 활용 효소 기능 예측은 다양한 생물학적 문제 해결에 효과적으로 적용될 수 있는 가능성을 보여주며 바이오 분야 전반의 연구를 가속화하는 데 크게 기여할 것.”이라고 밝혔다. 해당 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 저널인 `생명공학 동향(Trends in Biotechnology)'에 3월 28일자 게재됐다. ※ 논문명 : Enzyme Functional Classification Using Artificial Intelligence doi.org/10.1016/j.tibtech.2025.03.003 ※ 저자 정보 : 김하림(한국과학기술원, 공동 제1 저자), 지홍근(한국과학기술원, 공동 제1 저자), 김기배(한국과학기술원, 제3 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명 한편, 이번 연구는 과기정통부가 지원하는 석유 대체 친환경 화학기술 개발 사업의‘바이오 제조 산업 선도를 위한 첨단 합성 생물학 원천기술 개발’, 그리고 과기정통부와 보건복지부가 지원하는 ‘딥러닝 기반 합성 생물학을 이용한 혁신구조 항생제 개발’ 과제의 지원을 받아 수행됐다.
2025.04.17
조회수 5666
KAIST 설명가능 인공지능연구센터, 플러그앤플레이 방식의 설명가능 인공지능 프레임워크 공개
KAIST 설명가능 인공지능연구센터(센터장 최재식 교수)는 별도의 복잡한 설정이나 전문 지식 없이도 손쉽게 AI모델에 대한 설명성을 제공할 수 있는 플러그앤플레이(Plug-and-Play) 방식의 설명가능 인공지능 프레임워크를 개발해, 이를 27일 오픈소스로 공개했다. 설명가능 인공지능(Explainable AI, 이하 XAI)이란 AI 시스템의 결과에 영향을 미치는 주요 요소를 사람이 이해할 수 있는 형태로 설명해주는 제반 기술을 말한다. 최근 딥러닝 모델과 같이 내부 의사 결정 프로세스가 불투명한 블랙박스 AI 모델에 대한 의존도가 커지면서 설명가능 인공지능 분야에 대한 관심과 연구가 증가했다. 그러나 지금까지는 연구자와 기업 실무자들이 설명가능 인공지능 기술을 활용하는 것이 몇 가지 이유로 쉽지 않았다. 우선, 딥러닝 모델의 유형별로 적용 가능한 설명 알고리즘들이 서로 달라서 해당 모델에 적용할 수 있는 설명 알고리즘이 무엇인지 알기 위해서는 XAI에 대해 어느 정도 사전지식이 필요하기 때문이다. 두번째로, 대상 모델에 적용할 수 있는 설명 알고리즘을 파악하더라도, 각 알고리즘마다 다른 하이퍼 파라미터를 어떻게 설정해야 최적의 설명 결과를 얻을 수 있을지 이해하는 것은 여전히 어려운 과제이다. 세번째로는 적용된 다수의 설명 알고리즘들 중에 어떤 알고리즘이 가장 정확하고 신뢰할 수 있는 것인지를 정량적으로 평가하기 위해서 또다른 툴을 이용해야 하는 번거로운 과정이 뒤따라야 했다. 이번에 오픈소스로 공개된 플러그앤플레이 설명가능 인공지능 프레임워크(Plug-and-Play XAI Framework, 이하 PnPXAI 프레임워크)는 이러한 어려움을 해결하고자 개발되었으며, AI의 신뢰성이 중요한 다양한 AI시스템 연구개발 현장에서 유용한 도구로 활용될 것으로 기대된다. PnPXAI 프레임워크는 적용 가능한 설명알고리즘을 자동으로 추천하기 위해 모델 구조를 인식하는 탐지모듈(Detector)과 적용가능한 설명 알고리즘을 선별하는 추천모듈(Recommender), 설명 알고리즘을 최적화하는 최적화모듈(Optimizer) 및 설명 결과 평가모듈(Evaluator)로 구성되어 있다. 사용자는 ‘자동설명(Auto Explanation)’ 모드에서 대상 모델과 데이터만 입력하면 설명 알고리즘의 시각적 결과(히트맵 또는 모델 결과에 영향을 끼친 중요한 속성들)와 설명의 정확도를 한번에 확인할 수 있다. 사용자들은 자동설명 모드를 통해 XAI에 대한 기본지식과 사용법을 숙지한 이후에는 프레임워크에 포함된 설명 알고리즘과 평가지표를 원하는 방식으로 자유롭게 활용할 수 있다. 현재 프레임워크에는 이미지, 텍스트, 시계열, 표 데이터 등 다양한 데이터유형을 지원하는 설명 알고리즘들이 제공되고 있다. 특히, 서울대학교(2세부 연구책임자 한보형교수)와 협력을 통해 뇌MRI 기반 알츠하이머병 진단모델에 대한 반예제 설명 알고리즘을 지원하였고, 서강대학교(3세부 연구책임자 구명완교수)와 공동연구를 통해 마비말장애 진단모델에 PnPXAI 프레임워크의 설명 알고리즘을 적용하여 AI 기반 의사결정지원 시스템에서 설명성을 성공적으로 구현하기도 했다. 또한, 한국전자통신연구원(4세부 연구책임자 배경만박사)에서 개발한 LLM(대규모언어모델) 생성결과의 사실성을 검증하는 알고리즘을 프레임워크에 통합하는 등 지원 범위를 지속적으로 확장하고 있다. KAIST 설명가능 인공지능연구센터 최재식 센터장은 “기존 설명가능 인공지능 도구들의 한계를 해결하고, 다양한 도메인에서 실질적으로 활용하기 쉬운 도구를 제공하기 위해 국내 최고의 연구진과 수년간 협력한 성과”라며, “이 프레임워크 공개를 통해 AI 기술의 신뢰성을 높여 상용화에 기여하는 것은 물론, 우리 연구센터가 설명가능 인공지능 분야의 글로벌 연구 생태계를 선도하는 중요한 발판을 마련했다는 점에서 의의가 있다”고 밝혔다. PnPXAI 프레임워크는 현재 국내 및 국제특허 출원을 완료했으며, Apache 2.0 라이선스를 준수하는 경우 누구나 깃허브 페이지[링크]를 통해 사용할 수 있다. 한편, 이 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구이다. (No. RS-2022-II220984, 플러그앤플레이 방식으로 설명가능성을 제공하는 인공지능 기술 개발 및 인공지능 시스템에 대한 설명 제공 검증)
2024.12.27
조회수 4902
KAIST 소프트웨어 산업발전 유공 ‘대통령 표창’ 수상 쾌거
“우리 대학은 전산학 전문지식이 부족한 개발자의 역량 개발부터 전문 고급 인력양성까지 다양한 교육 기회를 제공하며, 대한민국 AI 인재 100만 명 양성을 위한 원대한 목표 달성을 위해 앞장서 왔습니다. 대통령 표창이라는 쾌거를 이룬 데에 힘써주신 모든 구성원께 감사드립니다.” (이광형 총장) 우리 대학이 2일(월) 서울 양재 엘타워에서 열린 ‘2024년 소프트웨어 산업인의 날’ 기념식에서 소프트웨어 산업발전 유공 단체 부문에 선정되어 대통령 표창을 수상했다고 3일 밝혔다. 과학기술정보통신부가 주최하고 정보통신산업진흥원과 한국소프트웨어산업협회가 주관하는 ‘소프트웨어 산업인의 날’은 우리나라 소프트웨어 산업인의 위상을 고취하고 그 공로를 치하하고자 마련된 행사다. 매년 산업 활성화를 위한 정책 개발, 인력양성, 수출 증대 등에 공헌이 큰 유공자를 선발해 ‘소프트웨어 산업발전 유공 포상’을 수여하고 있다. 우리 대학은 소프트웨어 가치 확산과 우수 인력양성을 목표로 수요 기반의 산업현장 중심 교육, 비전공자 개발자와 융합 인재 양성 중심의 교육과정 개발에 공헌을 인정받았다. 구체적으로는 먼저 ‘SW 사관학교 정글’ 과정을 개설해 개발과 협업 능력을 겸비한 융합형 개발자를 육성했다. 이는 전산학 사전 지식이 없는 졸업생과 지식인을 대상으로 5개월간 집중 학습과 과제를 진행하는 비학위과정이다. 김재철AI대학원에서는 국내 최초로 인공지능 분야의 석·박사 프로그램 학위과정을 개설해 운영했다. 그리고 ‘머신러닝 엔지니어 부트캠프’를 기획해 딥러닝 기초부터 거대언어모델 등 최신 AI 기술에 대해 총 16주간 강의와 실습을 진행했다. 스타트업·창업 기업의 실무 역량을 강화하는 동시에 기업의 AI 기술 도입 문턱을 낮추고자 함이다. 또한, 2016년부터 소프트웨어 중심대학 사업 1, 2단계에 선정되어 참여했다. 이를 통해 신기술 기반의 교과과정과 학생들이 융합 교육을 직접 선택하는 자율형 시스템, 인턴십 확대 등을 추진한 점 역시 높게 평가받았다. 이날 시상식에서는 서민준 김재철AI대학원 교수도 소프트웨어 산업발전 유공으로 국무총리 표창을 받았다. 서 교수는 지난 4년간 AI 최상위 국제학회에 28편의 논문을 발표하며 AI 및 자연어처리 분야에서 선도적 연구 성과를 달성한 점을 인정받았다. 동시에 △지식 인코딩 △지식 접근 및 활용 △고차원 추론 수행 등 언어 모델 연구의 독창성 및 혁신성을 제고하고 국제 학술 커뮤니티에서 리더십을 발휘한 공로에도 주목했다. 이광형 총장은 “우리 대학은 앞으로도 지속적인 최신 교육과정 개발과 혁신적인 학위 제도 등을 통해, 글로벌 경쟁력을 갖춘 소프트웨어 인재 양성에 최선을 다할 것”이라고 밝혔다.
2024.12.02
조회수 3842
천천히 걸음 속도 높여도 다 아는 인공지능 기술 개발
최근 건강에 관한 관심이 점차 커지면서 일상생활에서 스마트 워치, 스마트 링 등을 통해 자기 신체 변화를 살펴보는 일이 보편화되었다. 그런데 기존 헬스케어 앱에서는 걷기에서 뛰기로 갑자기 변화를 줄 경우는 잘 측정이 되지만 천천히 속도를 높이는 경우는 측정이 안 되는 현상이 발생했다. 우리 연구진이 완만한 변화에도 동작을 정확하게 파악하는 기술을 개발했다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 착용 기기 센서 데이터에서 사용자 상태 변화를 정확하게 검출하는 새로운 인공지능 기술을 개발했다고 12일 밝혔다. 보통 헬스케어 앱에서는 센서 데이터를 통해 사용자의 상태 변화를 탐지하여 현재 동작을 정확히 인식하는 기능이 필수이다. 이를 변화점 탐지라 부르며 다양한 인공지능 기술이 변화점 탐지 품질을 향상하기 위해 적용되고 있다. 이재길 교수팀은 사용자의 상태가 급진적으로 변하거나 점진적으로 변하는지에 관계없이 정확하게 잘 동작하는 변화점 탐지 방법론을 개발했다. 연구팀은 각 시점의 센서 데이터를 인공지능 기술을 통해 벡터*로 표현하였을 때, 이러한 벡터가 시간이 지남에 따라 이동하는 방향을 주목하였다. 같은 동작이 유지될 때는 벡터가 이동하는 방향이 급변하는 경향이 크고, 동작이 바뀔 때는 벡터가 직선상으로 이동하는 경향이 크게 나타났다. *벡터: 사용자의 시점별 상태 특성(이동속도, 자세, 움직임 등)을 나타내는 가장 좋은 수학적 개념 연구팀은 제안한 방법론을 ‘리커브(RECURVE)’라고 명명했다. 리커브(RECURVE)는 양궁 경기에 쓰이는 활의 한 종류이며, 활이 휘어 있는 모습이 데이터의 이동 방향 변화 정도(곡률)로 변화점을 탐지하는 본 방법론의 동작 방식을 잘 나타낸다고 보았다. 이 방법은 변화점 탐지의 기준을 거리에서 곡률이라는 새로운 관점으로 바라본 매우 신선한 방법이라는 평가를 받았다. 연구팀은 변화점 탐지 문제에서 다양한 헬스케어 센서 스트림 데이터를 사용하여 방법론의 우수성을 검증하여 기존 방법론에 비해 최대 12.7% 정확도 향상을 달성했다. 연구팀을 지도한 이재길 교수는 "센서 스트림 데이터 변화점 탐지 분야의 새로운 지평을 열 만한 획기적인 방법이며 실용화 및 기술 이전이 이뤄지면 실시간 데이터 분석 연구 및 디지털 헬스케어 산업에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 데이터사이언스대학원을 졸업한 신유주 박사가 제1 저자, 전산학부 박재현 석사과정 학생이 제2 저자로 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2024'에서 올 12월 발표될 예정이다. (논문명 : Exploiting Representation Curvature for Boundary Detection in Time Series) 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(RS-2020-II200862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다.
2024.11.12
조회수 5241
산업디자인학과 강이연 교수, '서울디자인 2024에서 ‘미래 AI를 경험해 보세요'
‘인류와 인공지능(AI)이 함께 진화할 수 있을까? 그것은 어떤 모습일까?’라는 KAIST 연구진의 질문에서 시작된 미래 인공지능(AI)시스템을 상상해보고 체험해 보는 기회가 마련되었다. 우리 대학 산업디자인학과 강이연 교수가 서울 동대문디지털플라자(이하, DDP)에서 열리는 ‘서울디자인 2024’ 주제전에서 ‘라이트 아키텍처(LIGHT ARCHITECTURE)’ 제목으로 대규모 단독 전시를 진행한다. 서울시가 주최하고 서울디자인재단이 주관하는 ‘서울디자인 2024’는 미래 디자인 유행과 새로운 디자인을 시민들에게 선보이고 향유하고자 2014년부터 개최된 행사이다. 올해는 ‘/내일을 상상하다(/Imagine Tomorrow)’를 주제로 인공지능(AI)이 앞으로의 인류의 삶에 미치는 영향력과 변화를 제시한다. 강이연 교수의 신작 ‘LIGHT ARCHITECTURE’는 전시장 전체를 활용한 대형 설치 작품이다. 가상의 인공신경망 모습을 공학적 설계를 통해 구현하여 빛과 어둠, 복잡성과 가능성, 두려움과 계몽 등 AI 시대 상충하는 가치를 다차원적으로 그려낸다. 또한, 프로젝션 영상과 입체 다채널 공간 음향, 키네틱 조각품들을 함께 설치하여 관객 스스로가 인공신경망 속 데이터의 일부이자 책임자·주체자가 되는 경험과 몰입을 제공한다. 최근 대중의 관심이 AI 결과물에만 집중되는 가운데, 딥러닝 모델과 구조는 점점 복잡해지고 있다. 이에, 미래 AI 시스템은 인간이 설계했음에도 정확한 작동 기제나 답을 내릴 수 없어 ‘블랙박스’라고도 불린다. 강 교수는 전시를 통해 관람객이 이 블랙박스를 이해하고 미래 AI 시스템을 상상해보는 기회를 제공한다. 동시에 기술 발전의 고도화에 따른 인간의 기술 소외를 우려하는 메시지를 함께 전할 예정이다. 강이연 산업디자인학과 교수는 이번 주제 전시에 대해 “AI를 해석하고 설명하는 도구·기법이 AI 자체의 발전 속도를 따라가지 못하고 있다. 이 양상을 이해하는 동시에 미래 AI 아키텍처를 상상해보는 시도가 꼭 필요하다”라고 전했다. 이어, “많은 분들이 관람을 통해 미래 AI 시대의 주체가 되어보는 경험을 해보길 바라는 마음”이라고 소감을 밝혔다. 강이연 교수의 ‘LIGHT ARCHITECTURE’ 주제 전시는 이달 17일부터 27일까지 DDP 아트홀 2관에서 관람할 수 있다. 티켓 구매 및 자세한 내용은 ‘서울디자인 2024’ 홈페이지(https://seoul-design.or.kr/)에서 확인할 수 있다.
2024.10.18
조회수 4415
인공지능 화학 학습으로 새로운 소재 개발 가능
새로운 물질을 설계하거나 물질의 물성을 예측하는 데 인공지능을 활용하기도 한다. 한미 공동 연구진이 기본 인공지능 모델보다 발전되어 화학 개념 학습을 하고 소재 예측, 새로운 물질 설계, 물질의 물성 예측에 더 높은 정확도를 제공하는 인공지능을 개발하는 데 성공했다. 우리 대학 화학과 이억균 명예교수와 김형준 교수 공동 연구팀이 창원대학교 생물학화학융합학부 김원준 교수, 미국 UC 머세드(Merced) 응용수학과의 김창호 교수 연구팀과 공동연구를 통해, 새로운 인공지능(AI) 기술인 ‘프로핏-넷(이하 PROFiT-Net)’을 개발하는 데 성공했다고 9일 밝혔다. 연구팀이 개발한 인공지능은 유전율, 밴드갭, 형성 에너지 등의 주요한 소재 물성 예측 정확도에 있어서 이번 기술은 기존 딥러닝 모델의 오차를 최소 10%, 최대 40% 줄일 수 있는 것으로 보여 주목받고 있다. PROFiT-Net의 가장 큰 특징은 화학의 기본 개념을 학습해 예측 성능을 크게 높였다는 점이다. 최외각 전자 배치, 이온화 에너지, 전기 음성도와 같은 내용은 화학을 배울 때 가장 먼저 배우는 기본 개념 중 하나다. 기존 AI 모델과 달리, PROFiT-Net은 이러한 기본 화학적 속성과 이들 간의 상호작용을 직접적으로 학습함으로써 더욱 정밀한 예측을 할 수 있다. 이는 특히 새로운 물질을 설계하거나 물질의 물성을 예측하는 데 있어 더 높은 정확도를 제공하며, 화학 및 소재 과학 분야에서 크게 기여할 것으로 기대된다. 김형준 교수는 "AI 기술이 기초 화학 개념을 바탕으로 한층 더 발전할 수 있다는 가능성을 보여주었다ˮ고 말했으며 “추후 반도체 소재나 기능성 소재 개발과 같은 다양한 응용 분야에서 AI가 중요한 도구로 자리 잡을 수 있는 발판을 마련했다ˮ고 말했다. 이번 연구는 KAIST의 김세준 박사가 제1 저자로 참여하였고, 국제 학술지 `미국화학회지(Journal of the American Chemical Society)' 에 지난 9월 25일 字 게재됐다. (논문명: PROFiT-Net: Property-networking deep learning model for materials, PROFiT-Net 링크: https://github.com/sejunkim6370/PROFiT-Net) 한편 이번 연구는 한국연구재단(NRF)의 나노·소재 기술개발(In-memory 컴퓨팅용 강유전체 개발을 위한 전주기 AI 기술)과 탑-티어 연구기관 간 협력 플랫폼 구축 및 공동연구 지원사업으로 진행됐다.
2024.10.10
조회수 9123
고비용 인프라 없이 AI 학습 가속화 가능
우리 대학 연구진이 고가의 데이터센터급 GPU나 고속 네트워크 없이도 AI 모델을 효율적으로 학습할 수 있는 기술을 개발했다. 이 기술을 통해 자원이 제한된 기업이나 연구자들이 AI 연구를 보다 효과적으로 수행할 수 있을 것으로 기대된다. 우리 대학 전기및전자공학부 한동수 교수 연구팀이 일반 소비자용 GPU를 활용해, 네트워크 대역폭이 제한된 분산 환경에서도 AI 모델 학습을 수십에서 수백 배 가속할 수 있는 기술을 개발했다고 19일 밝혔다. 기존에는 AI 모델을 학습하기 위해 개당 수천만 원에 달하는 고성능 서버용 GPU(엔비디아 H100) 여러 대와 이들을 연결하기 위한 400Gbps급 고속 네트워크를 가진 고가 인프라가 필요했다. 하지만 소수의 거대 IT 기업을 제외한 대부분의 기업과 연구자들은 비용 문제로 이러한 고가의 인프라를 도입하기 어려웠다. 한동수 교수 연구팀은 이러한 문제를 해결하기 위해 '스텔라트레인(StellaTrain)'이라는 분산 학습 프레임워크를 개발했다. 이 기술은 고성능 H100에 비해 10~20배 저렴한 소비자용 GPU를 활용해, 고속의 전용 네트워크 대신 대역폭이 수백에서 수천 배 낮은 일반 인터넷 환경에서도 효율적인 분산 학습을 가능하게 한다. 기존의 저가 GPU를 사용할 경우, 작은 GPU 메모리와 네트워크 속도 제한으로 인해 대규모 AI 모델 학습 시 속도가 수백 배 느려지는 한계가 있었다. 하지만 연구팀이 개발한 스텔라트레인 기술은 CPU와 GPU를 병렬로 활용해 학습 속도를 높이고, 네트워크 속도에 맞춰 데이터를 효율적으로 압축 및 전송하는 알고리즘을 적용해 고속 네트워크 없이도 여러 대의 저가 GPU를 이용해 빠른 학습을 가능하게 했다. 특히, 학습을 작업 단계별로 CPU와 GPU가 나누어 병렬적으로 처리할 수 있는 새로운 파이프라인 기술을 도입해 연산 자원의 효율을 극대화했다. 또한, 원거리 분산 환경에서도 GPU 연산 효율을 높이기 위해, AI 모델별 GPU 활용률을 실시간으로 모니터링해 모델이 학습하는 샘플의 개수(배치 크기)를 동적으로 결정하고, 변화하는 네트워크 대역폭에 맞추어 GPU 간의 데이터 전송을 효율화하는 기술을 개발했다. 연구 결과, 스텔라트레인 기술을 사용하면 기존의 데이터 병렬 학습에 비해 최대 104배 빠른 성능을 낼 수 있는 것으로 나타났다. 한동수 교수는 "이번 연구가 대규모 AI 모델 학습을 누구나 쉽게 접근할 수 있게 하는 데 큰 기여를 할 것"이라고 밝혔다. “앞으로도 저비용 환경에서도 대규모 AI 모델을 학습할 수 있는 기술 개발을 계속할 계획이다”라고 말했다. 이번 연구는 우리 대학 임휘준 박사, 예준철 박사과정 학생, UC 어바인의 산기타 압두 조시(Sangeetha Abdu Jyothi) 교수와 공동으로 진행됐으며, 연구 성과는 지난 8월 호주 시드니에서 열린 ACM SIGCOMM 2024에서 발표됐다. 한편, 한동수 교수 연구팀은 2024년 7월 GPU 메모리 한계를 극복해 소수의 GPU로 거대 언어 모델을 학습하는 새로운 기술도 발표했다. 해당 연구는 최신 거대 언어 모델의 기반이 되는 전문가 혼합형(Mixture of Expert) 모델을 제한된 메모리 환경에서도 효율적인 학습을 가능하게 한다. 이 결과 기존에 32~64개 GPU가 필요한 150억 파라미터 규모의 언어 모델을 단 4개의 GPU만으로도 학습할 수 있게 됐다. 이를 통해 학습의 필요한 최소 GPU 대수를 8배~16배 낮출 수 있게 됐다. 해당 논문은 KAIST 임휘준 박사와 김예찬 연구원이 참여했으며, 오스트리아 빈에서 열린 AI 분야 최고 권위 학회인 ICML에 발표됐다. 이러한 일련의 연구 결과는 자원이 제한된 환경에서도 대규모 AI 모델 학습이 가능하다는 점에서 중요한 의미를 가진다. 해당 연구는 과학기술정보통신부 한국연구재단이 주관하는 중견연구사업 (RS-2024-00340099), 정보통신기획평가원(IITP)이 주관하는 정보통신·방송 기술개발사업 및 표준개발지원사업 (RS-2024-00418784), 차세대통신클라우드리더십구축사업 (RS-2024-00123456), 삼성전자의 지원을 받아 수행됐다.
2024.09.19
조회수 6357
딥러닝 대부 요슈아 벤지오 교수와 AI 연구센터 설립
우리 대학 전산학부 안성진 교수 연구팀이 세계적인 인공지능 권위자인 캐나다의 요슈아 벤지오(Yoshua Bengio) 교수와 함께 ‘KAIST-밀라(MILA) 프리프론탈 인공지능 연구센터’를 KAIST에 7월 1일부로 설립했다고 4일 밝혔다. 이 사업은 과학기술정보통신부와 한국연구재단이 지원하는 ‘2024년도 해외우수연구기관 협력허브구축사업’의 일환으로, 안성진 교수 연구팀은 2024년 7월부터 2028년 12월까지 총 27억 원의 지원을 받게 된다. 이 센터는 차세대 인공지능 기술 개발을 위한 국제공동연구의 중심지로서 역할을 하게 될 예정이다. 요슈아 벤지오 교수는 딥러닝 분야의 창시자 중 한 명으로, 현대 인공지능 연구에 지대한 영향을 미친 인물이다. 그의 연구는 현재의 딥러닝 기술을 탄생시키고 발전시키는 데 중요한 역할을 했다. KAIST 안성진 교수팀과의 이번 협력은 요슈아 벤지오 교수의 몬트리올 학습 알고리즘 연구소(MILA, Montreal Institute for Learning Algorithms)와 KAIST의 선도적인 인공지능 연구 역량을 결합해, 차세대 인공지능 기술 발전에 새로운 지평을 열 것으로 기대된다. 이번 연구의 핵심은 인간의 고위인지 능력을 모방하는 ‘시스템2’ AI 기술의 개발이다. 시스템2는 데니얼 카네만의 듀얼프로세스 이론에서 제시된 개념으로, 직관적이고 빠른 인지를 담당하는 ‘시스템1‘과 달리, 수학적 논리 추론 같이 복잡하고 순차적인 사고 과정을 담당하는 기능을 수행한다. 이 과정은 주로 뇌의 전두엽에서 이뤄지며, 계획, 판단, 추론 등 고차원적인 인지 기능을 관리한다. 대형언어모델의 발전에도 불구하고, 현재의 딥러닝 기술은 이러한 고위인지 기능을 효과적으로 구현하는 데 여전히 한계를 보이고 있다. 이번 연구는 이러한 한계를 극복하고, 전두엽이 담당하는 고위인지 기능을 AI에 통합하는 ‘프리프론탈 AI’를 구현하기 위한 기반 기술을 확보하는 것을 목표로 한다. 또한, 이번 연구에는 우리 대학 홍승훈 교수와 포항공과대학교(POSTECH)의 안성수 교수도 공동 연구진으로 참여할 예정이다. 홍승훈 교수는 시스템2 메타 학습 알고리즘을 연구하며, 안성수 교수는 시스템2 기능을 ‘과학을 위한 AI(AI4Science)’ 응용에 적용하기 위한 연구를 진행할 예정이다. 안성진 교수는 “요슈아 벤지오 교수와의 협력은 차세대 인공지능 기술 개발에 있어 중요한 이정표가 될 것이다”라며, “이 연구를 통해 인간의 전두엽이 수행하는 고위인지 기능을 모방하는 딥러닝 알고리즘을 개발하고, 안전하고 신뢰할 수 있는 인공지능 에이전트를 구현하는 기술적 기반을 마련할 수 있을 것이다”라고 연구의 의의를 설명했다. 이번 연구센터 설립을 통해 우리 대학은 국제적인 연구 네트워크를 강화하고, 인공지능 분야에서 세계적인 선도 기관으로서의 위치를 더욱 공고히 할 전망이다.
2024.09.04
조회수 8034
누구나 천연물 합성 경로 예측 가능하다
식물은 고착생활을 하면서 환경 스트레스에 대응하기 위해 진화적으로 다양하고 복잡한 천연물을 만들고 있다. 이 천연물들은 인류의 생존에도 필수적인 역할을 하고 있는데 미국식품의약국(FDA) 승인 저분자 약물의 30% 이상이 식물 천연물에 기초하고 있다는 사실이 이를 증명하고 있다. 한국 연구진이 딥러닝을 활용, 천연물의 역-생합성 경로를 예측하는 모델을 제시해 천연물 기반 의약품 대량 생산에 활용될 수 있도록 해 화제다. 우리 대학 생명과학과 김상규 교수 연구팀과 김재철AI대학원 황성주 교수 연구팀의 공동연구를 통해 천연물 생합성 경로를 예측하는 딥러닝 모델을 개발하고 부산대학교 박정빈 교수 연구팀과 협업을 통해 관심있는 누구나 모델을 활용할 수 있도록 인터넷 웹사이트(readretro.net)를 구축했다고 14일 밝혔다. 천연물 활용 및 대량 생산을 위해서는 생합성 경로를 밝히는 것이 필수적이다. 하지만 복잡한 구조를 가진 많은 약용 천연물의 생합성 경로가 잘 밝혀져 있지 않아 현재는 식물로부터 직접 추출해 사용하고 있다. 생합성 경로 연구는 도전적이지만 이를 밝히고 생합성 효소를 찾을 수 있다면 천연물의 활용 가치를 증진할 수 있다. 식물 천연물 생합성 경로 연구의 첫 단계는 식물이 어떻게 물질을 합성하는지 그 경로를 역추적(역합성 경로를 제시)하는 것으로 시작된다. 공동연구팀은 딥러닝을 활용해 천연물의 역-생합성 경로를 예측하는 모델을 제시했다. 이번 연구에서 연구팀은 발전된 역합성 모델과 생화학적 직관을 결합해 성공적으로 천연물 생합성 경로 예측을 수행하는 인공지능 모델을 개발했다. 연구팀은 개발한 인공지능의 이름을 ‘역합성을 읽어내는 모델’이라는 뜻을 담아 ‘리드레트로(READRetro)’라고 명명했다. 이 모델은 천연물 역합성을 예측하는 인공지능 모델 중 최고의 성능을 보이는 것으로 확인되었고 이를 개별 연구자들이 쉽게 활용할 수 있도록 구현했다는 데 의미를 가진다. 김상규 교수는 “식물이 어떻게 복잡한 천연물을 만들 수 있게 되었는지 이해하는 기초 연구에서부터 천연물 기반 의약품을 대량으로 생산하기 위한 합성생물학 연구 등에 활용이 기대된다. 추후 합성 경로를 매개하는 효소를 예측하거나 거대 분자의 역합성 예측 정확도를 높이는 연구를 실시할 계획이다” 라고 말했다. 또한 김 교수는 “이번 연구는 2022년 KAIST 인공지능연구원에서 주최한 멜팅 팟(Melting pot) 세미나에서 저와 황성주 교수가 발제자와 토론자로 만난 인연으로 시작됐다. KAIST가 표방하는 융합이 생화학자와 전산학자의 힘을 합쳐 이끌어 낸 좋은 연구로 큰 의미를 갖는다고 생각한다”고 강조했다. 생명과학과 김태인 석박사통합과정과 김재철AI대학원 이슬 석박사통합과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘뉴 파이톨로지스트(New Phytologist)'에 출판됐다. (논문명 : READRetro: natural product biosynthesis predicting with retrieval-augmented dual-view retrosynthesis). 한편 이번 연구는 KAIST POST-AI, 한국연구재단, 과학기술정보통신부 등의 지원을 받아 수행됐다.
2024.08.14
조회수 6537
법대생이 제안한 ‘유산위험 측정기’ KAIST 아이디어 공모전 대상
"저출산 문제를 해결하려면 출산율뿐만 아니라 유산율도 주의 깊게 봐야 합니다"우리 대학이 'KAIST Crazy Day 아이디어 공모전' 시상식을 1일 오후 대전 본원에서 개최했다. 'KAIST Crazy Day 아이디어 공모전(이하 공모전)'은 인구 위기를 극복할 과학기술 아이디어를 찾기 위해 3월부터 진행한 대국민 공모전이다. 약 한 달간 제안서를 접수한 결과 254개의 아이디어가 접수되었고 2단계 서류 심사를 통과한 5개 팀이 지난달 말 대전 본원에서 열린 공개 발표심사에 참여했다. 대상은 '유산율 감소를 위한 휴대용 AI 태아측정기 개발'을 제안한 박인아·이다은·허한나 팀이 차지했다. 2002년생 동갑내기로 동국대학교 법학과에 재학 중인 이들은 인구 위기를 극복할 해법을 찾기 위해 최근 10년간 급증하는 유산율에 주목했다. 국민건강보험공단의 통계에 따르면 2013년부터 2022년까지 10년간 유산된 태아는 총 146만여 명에 달한다. 같은 기간 출생아 수는 348만여 명이다. 출산 대비 유산 비율도 지속해서 증가해 2013년 37.5%에서 2022년 49.4%까지 치솟았다. 이들은 잉태된 생명을 건강하게 지키는 것이 임신과 출산을 장려하는 것만큼 출산율 증가에 중요한 해법이란 전제 아래 24시간 태아의 상태를 관찰할 수 있는 초박형 기기를 제안했다. 최근 혈당 측정을 위해 널리 활용되고 있는 부착형 패치보다 더 얇게 제작된 초박형 패치를 산모에게 장착한 뒤 딥러닝 인공지능 기술을 활용해 태아의 안정성을 관찰하는 방식이다. 측정된 결과는 휴대전화 애플리케이션에서 언제든지 확인하고 이상 신호가 감지되면 기기가 산모와 의료기관에 실시간으로 통지해 위기 상황을 사전에 대비하는 것이 핵심이다. 또한, 수도권보다는 지방에 거주하는 여성의 유산율이 높은 문제를 해결하기 위해 분만 취약지 권역 의료시설과의 연계 방안도 함께 제안했다. 심사위원단은 "대상 팀의 아이디어는 임신 여성 3명 중 1명이 유산을 겪고 있는 상황에서 유산율을 절반으로만 떨어뜨려도 우리나라 출산율 제고에 큰 도움이 될 수 있는 제안"이라고 평가했다. 아이디어를 제안한 박인아 씨는 "인구문제 해결에 있어서 출산율뿐만 아니라 유산율이라는 새로운 시각의 접근을 긍정적으로 생각해 주시고 큰 상까지 주셔서 감사하다"라며, "인구문제는 복잡하고 어려운 도전이지만, 더 많은 사람이 이러한 문제에 관심을 가지고 함께 해결해 나갔으면 좋겠다"라고 소감을 밝혔다. 이와 함께, 할머니·할아버지가 알려주는 마을 여행 컨셉에 GPS· 3D 거리뷰 기술을 적용한 관광 안내 서비스 ‘할말’을 제안한 윤민지·안규리·이승민(충남대 재학생) 팀이 최우수상을 차지했다. 노인의 지적자산을 관광산업에 적용해 고령층을 생산 가능 인구로 전환하는 것이 핵심이다. 우수상은 '행복한 감정을 키우는 행복루틴 앱 챌린지'를 통해 형성한 행복한 습관이 출산율 증가와 인구 위기의 근본적 문제를 해결할 것이라고 제안한 유인근(인천 도담초 교사) 씨가 받았다. 송태오, 김은결(베트남 호치민 국제고 재학생) 팀은 온라인으로 최종 심사에 참여해 인공지능을 활용해 치명적 질병의 초기 증상을 발견하고 사용자에게 알리는 교류형 시스템 '하우스피탈(House+Hospital)'을 제안했다. 노인의 건강수명을 연장하고 청년층의 경제적 부담을 완화하는 아이디어를 높게 평가받아 우수상으로 선정됐다. 1일 오후 대전 본원에서 열린 시상식에서 대상 500만 원, 최우수상 300만 원, 우수상 각 100만 원의 상금과 총장상이 수여됐다.공모전을 총괄한 서용석 국가미래전략기술 정책연구소장은 "이번 공모에는 인구 위기와 관련해 전문가들이 간과하거나 놓치고 있었던 문제에 대한 다양한 아이디어와 해결 방안이 제시된 것은 물론 청년 세대들이 고령 세대와의 연대와 상생을 고민하고 있다는 점이 인상적이었다"라고 평가했다. 서 소장은 이어 "이번에 제시된 아이디어들이 실제 R&D로 추진될 수 있도록 과기부나 보건복지부에 제안할 예정"이라고 덧붙였다.
2024.07.02
조회수 5524
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9