<(From Left)Jaewook Myung from KAIST, Sunho Park from KAIST, Dr. Chungheon Shin from Stanford University, Prof. Craig S. Criddle from Stanford University >
KAIST announced that a research team led by Professor Jaewook Myung from the Department of Civil and Environmental Engineering, in collaboration with Stanford University, has identified how ethane (C2H6)—a major constituent of natural gas—affects the core metabolic pathways of the obligate methanotroph Methylosinus trichosporium OB3b.
Methane (CH4), a greenhouse gas with roughly 25 times the global warming potential of carbon dioxide, is rarely emitted alone into the environment. It is typically released in mixtures with other gases. In the case of natural gas, ethane can comprise up to 15% of the total composition.
Methanotrophs are aerobic bacteria that can utilize methane as their sole source of carbon and energy. Obligate methanotrophs, in particular, strictly utilize only C1 compounds such as methane or methanol. Until now, little was known about how these organisms respond to C2 compounds like ethane, which they cannot use for growth.
This study reveals that although ethane cannot serve as a growth substrate, its presence significantly affects key metabolic functions in M. trichosporium OB3b—including methane oxidation, cell proliferation, and the intracellular synthesis of polyhydroxybutyrate (PHB), a biodegradable polymer.
Under varying methane and oxygen conditions, the team observed that ethane addition consistently resulted in three metabolic effects: reduced cell growth, lower methane consumption, and increased PHB accumulation. These effects intensified with rising ethane concentrations. Notably, ethane oxidation occurred only when methane was present, confirming that it is co-oxidized via particulate methane monooxygenase (pMMO), the key enzyme responsible for methane oxidation.
Further analysis showed that acetate, an intermediate formed during ethane oxidation, played a pivotal role in this response. Higher acetate levels inhibited growth but enhanced PHB production, suggesting that ethane-derived acetate drives contrasting carbon assimilation patterns depending on nutrient conditions—nutrient-balanced growth phase and nutrient-imbalanced PHB accumulation phas.
In addition, when external reducing power was supplemented (via methanol or formate), ethane consumption was enhanced significantly, while methane oxidation remained largely unaffected. This finding suggests that ethane, despite not supporting growth, actively competes for intracellular resources such as reducing equivalents. It offers new insights into substrate prioritization and resource allocation in methanotrophs under mixed-substrate conditions.
Interestingly, while methane uptake declined in the presence of ethane, the expression of pmoA, the gene encoding pMMO, remained unchanged. This suggests that ethane’s impact occurs beyond the transcriptional level—likely via post-transcriptional or enzymatic regulation.
<Figure 3. Mechanistic analysis of ethane-induced metabolic changes in obligate methanotrophs: acetate-driven carbon assimilation change (blue box), intracellular reducing power depletion (red box), and pmoA expression quantitative analysis (green box)>
“This is the first study to systematically investigate how obligate methanotrophs respond to complex gas mixtures involving ethane,” said Professor Jaewook Myung. “Our findings show that even non-growth substrates can meaningfully influence microbial metabolism and biopolymer synthesis, opening new possibilities for methane-based biotechnologies and bioplastic production.”
The study was supported by the National Research Foundation of Korea, the Ministry of Land, Infrastructure and Transport, and the Ministry of Oceans and Fisheries. The results were published in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.
<ID-style photograph against a laboratory background featuring an OLED contact lens sample (center), flanked by the principal authors (left: Professor Seunghyup Yoo ; right: Dr. Jee Hoon Sim). Above them (from top to bottom) are: Professor Se Joon Woo, Professor Sei Kwang Hahn, Dr. Su-Bon Kim, and Dr. Hyeonwook Chae> Electroretinography (ERG) is an ophthalmic diagnostic method used to determine whether the retina is functioning normally. It is widely employed for diagnosing hereditary
2025-08-12< (From left) Ph.D candidate Wonho Zhung, Ph.D cadidate Joongwon Lee , Prof. Woo Young Kim , Ph.D candidate Jisu Seo > Traditional drug development methods involve identifying a target protin (e.g., a cancer cell receptor) that causes disease, and then searching through countless molecular candidates (potential drugs) that could bind to that protein and block its function. This process is costly, time-consuming, and has a low success rate. KAIST researchers have developed an AI model th
2025-08-12<Photo1. Group photo at the end of the program> KAIST (President Kwang Hyung Lee) announced on the 11thof August that it successfully hosted the 'APEC Youth STEM Conference KAIST Academic Program,' a global science exchange program for 28 youth researchers from 10 countries and over 30 experts who participated in the '2025 APEC Youth STEM* Collaborative Research and Competition.' The event was held at the main campus in Daejeon on Saturday, August 9. STEM (Science, Technology, Eng
2025-08-11<Photo1. Group Photo of Team Atlanta> Team Atlanta, led by Professor Insu Yun of the Department of Electrical and Electronic Engineering at KAIST and Tae-soo Kim, an executive from Samsung Research, along with researchers from POSTECH and Georgia Tech, won the final championship at the AI Cyber Challenge (AIxCC) hosted by the Defense Advanced Research Projects Agency (DARPA). The final was held at the world's largest hacking conference, DEF CON 33, in Las Vegas on August 8 (local time)
2025-08-10<(From Left) Ph.D candidate Jeongseok Oh from KAIST, Dr. Seungwoo Yoon from KAIST, Prof.Joon-Ho Wang from Samsung Medical Center, Prof.Seungbum Koo from KAIST> Professor Seungbum Koo’s research team received the Clinical Biomechanics Award at the 30th International Society of Biomechanics (ISB) Conference, held in July 2025 in Stockholm, Sweden. The Plenary Lecture was delivered by first author and Ph.D. candidate Jeongseok Oh. This research was conducted in collaboration with P
2025-08-10