우리 대학은 국가AI연구거점(National AI Research Lab, NAIRL)이 글로벌AI프론티어랩(Global AI Frontier Lab)과 공동 주관하여 ‘글로벌 AI 프론티어 심포지엄 2025’를 27일 서울 드래곤시티에서 개최했다.
특정 유전자(IDH)에 이상이 생겨 발생하는 IDH-돌연변이 신경교종은 50세 이하 젊은 성인에게 가장 흔한 악성 뇌종양으로, 재발률이 높아 치료가 어려운 난치성 뇌암이다. 그동안 치료는 눈에 보이는 종양 덩어리를 제거하는 데 집중돼 왔다. 그러나 국내 연구진이 이 종양이 덩어리가 보이기 훨씬 이전부터 정상 뇌 속 세포에서 이미 시작되고 있었다는 사실을 세계 최초로 밝혀내며, 조기 진단과 재발 억제 치료의 새로운 길을 열었다. 우리 대학은 의과학대학원 이정호 교수와 연세대학교(총장 윤동섭) 세브란스병원 신경외과 강석구 교수 공동연구팀이 IDH-돌연변이 신경교종이 정상 뇌조직에 존재하는 교세포전구세포(Glial Progenitor Cell, GPC)에서 기원한다는 사실을 세계 최초로 규명했다고 9일 밝혔다. * 교세포전구세포(GPC): 정상 뇌에도 존재하는 세포로, 유전자 변이가 생기면 악성 뇌종양의 출발점이 될 수 있는 세포 연구팀은 광범위 절제 수술을 통해 확보한 종양 조직과 종양 주변의 정상 대뇌피질을 정밀 분석한 결과, 겉보기에는 정상인 뇌조직 안에 이미 IDH-돌연변이를 가진 ‘기원세포(cell of origin)’가 존재한다는 사실을 밝혀냈다. 이는 악성 뇌종양이 특정 시점에 갑자기 생겨나는 것이 아니라, 정상 뇌 속에서 이미 시작돼 오랜 시간에 걸쳐 서서히 진행되고 있었다는 점을 처음으로 입증한 결과다. 이어 연구팀은 ‘어떤 유전자가 어디에서 작동하는지’를 한 번에 보여주는 최신 분석 기술인 ‘공간 전사체 기술(spatial transcriptomics)’을 활용해, 이러한 변이를 가진 기원세포가 대뇌피질에 존재하는 교세포전구세포(GPC)임을 확인했다. 더 나아가, 환자에게서 발견된 것과 동일한 유전적 변이(driver mutation)를 마우스의 교세포전구세포에 도입해 실제 뇌종양이 발생하는 과정을 동물모델에서 재현하는 데 성공했다. 이번 연구는 뇌종양의 ‘기원’을 규명한 기존 연구를 한 단계 확장한 성과다. 공동연구팀은 앞서 2018년, 대표적인 악성 뇌종양인 ‘교모세포종(glioblastoma)’이 종양 본체가 아닌, 성인 뇌에서도 새로운 뇌세포를 만들어낼 수 있는 뇌 속의 원천 세포인 뇌실하영역(subventricular zone)의 신경줄기세포(neural stem cell)에서 시작된다는 사실을 밝혀 (Lee et al., Nature, 2018), 뇌종양 연구의 패러다임 전환을 이끈 바 있다. 이번 연구는 ‘교모세포종’과 ‘IDH-돌연변이 신경교종’이 같은 뇌암이라 하더라도, 출발 세포와 시작 위치가 전혀 다르다는 사실을 밝혀내며, 뇌종양은 종류마다 발생 과정이 근본적으로 다르다는 점을 분명히 했다. 강석구 교수(공동 교신저자)는 “뇌종양은 종양 덩어리가 보이는 자리에서 바로 시작되지 않을 수 있다”며, “뇌종양의 아형에 따라 기원세포와 기원 부위를 직접 공략하는 접근은 조기 진단과 재발 억제 치료의 패러다임을 바꿀 수 있는 중요한 단서가 될 것”이라고 말했다. 이번 연구 성과를 바탕으로 KAIST 교원창업기업 소바젠㈜(대표이사 박철원)은 IDH-돌연변이 악성 뇌종양의 진화와 재발을 억제하는 RNA 기반 혁신 신약 개발을 진행 중이다. 또한 세브란스병원(병원장 이강영)은 연구중심병원 한미혁신성과창출 R&D 사업을 통해 난치성 뇌종양의 초기 변이 세포 탐지 및 제어 기술 개발을 추진하고 있다. 이번 연구의 단독 제1저자이자 신경외과 전문의인 박정원 박사(KAIST 의과학대학원 박사후 연구원)는 “KAIST의 세계적 기초과학 연구 역량과 연세대 세브란스병원의 임상 역량이 결합해 이룬 성과”라며, “환자를 진료하며 품어왔던 ‘이 종양은 어디서 시작되는가’라는 질문이 이번 연구의 출발점이었다”고 말했다. 이번 연구 결과는 세계적인 학술지 ‘사이언스(Science)’에 1월 9일 자로 게재됐다. ※ 논문명: IDH-mutant gliomas arise from glial progenitor cells harboring the initial driver mutation, DOI: 10.1126/science.adt0559 ※ 저자 정보: 박정원(KAIST 의과학대학원, 제1 저자), 강석구(연세대학교 세브란스병원, 교신저자), 이정호(KAIST 의과학대학원, 소바젠, 교신저자) 한편, 이번 연구는 서경배 과학재단, 한국연구재단, 과학기술정보통신부, 보건복지부, 한국보건산업진흥원(의사과학자 양성사업)의 지원을 받아 수행됐다.
메모리와 태양전지 등은 모두 반도체로 만들어지며, 반도체 내부에는 전기 흐름을 방해하는 보이지 않는 결함이 숨어 있을 수 있다. 공동연구진이 이러한 ‘숨은 결함(전자 트랩)’을 기존보다 약 1,000배 더 민감하게 찾아낼 수 있는 새로운 분석 방법을 개발했다. 이 기술은 반도체 성능과 수명을 높이고, 불량 원인을 정확히 찾아 개발 비용과 시간을 크게 줄일 것으로 기대된다. 우리 대학은 신소재공학과 신병하 교수와 IBM T. J. Watson 연구소의 오키 구나완(Oki Gunawan) 박사 공동 연구팀이 반도체 내부에서 전기를 방해하는 결함(전자 트랩)과 전자의 이동 특성을 동시에 분석할 수 있는 새로운 측정 기법을 개발했다고 8일 밝혔다. 반도체 안에는 전자를 먼저 붙잡아 이동을 막는 전자 트랩이 존재할 수 있다. 전자가 여기에 걸리면 전기가 원활히 흐르지 못해 누설 전류가 생기거나 성능이 저하된다. 따라서 반도체 성능을 정확히 평가하려면 전자 트랩이 얼마나 많고, 전자를 얼마나 강하게 붙잡는지를 알아내는 것이 중요하다. 연구팀은 오래전부터 반도체 분석에 사용돼 온 Hall 측정에 주목했다. Hall 측정은 전기와 자기장을 이용해 전자의 움직임을 분석하는 방법이다. 연구팀은 여기에 빛을 비추고 온도를 바꿔가며 측정하는 방식을 더해, 기존 방법으로는 확인하기 어려웠던 정보를 얻는 데 성공했다. 빛을 약하게 비추면 새로 생긴 전자들이 먼저 전자 트랩에 붙잡힌다. 반대로 빛의 세기를 점점 높이면 트랩이 채워지고, 이후 생성된 전자들은 자유롭게 이동하기 시작한다. 연구팀은 이 변화 과정을 분석해 전자 트랩의 양과 특성을 정밀하게 계산할 수 있었다. 이 방법의 가장 큰 장점은 한 번의 측정으로 여러 정보를 동시에 얻을 수 있다는 점이다. 전자가 얼마나 빠르게 움직이는지, 얼마나 오래 살아남는지, 얼마나 멀리 이동하는지 뿐아니라, 전자의 이동을 방해하는 트랩의 특성까지 함께 파악할 수 있다. 연구팀은 이 기법을 먼저 실리콘 반도체에 적용해 정확성을 검증한 뒤, 차세대 태양전지 소재로 주목 받는 페로브스카이트에 적용했다. 그 결과, 기존 방법으로는 검출하기 어려웠던 아주 적은 양의 전자 트랩까지 정밀하게 찾아내는 데 성공했다. 이는 기존 기술보다 약 1,000배 더 민감한 측정 능력을 확보했다는 의미다. 신병하 교수는 “이번 연구는 반도체 안에서 전기의 흐름과 이를 방해하는 요인을 하나의 측정으로 동시에 분석할 수 있는 새로운 방법을 제시했다”며, “메모리 반도체와 태양전지 등 다양한 반도체 소자의 성능과 신뢰성을 높이는 데 중요한 도구가 될 것”이라고 말했다. 이번 연구 결과는 신소재공학과 박사과정 김채연 학생이 제 1저자로 국제 학술지 사이언스 어드밴시스(Science Advances)에 1월 1일 자로 게재됐다. ※논문명: Electronic trap detection with carrier-resolved photo-Hall effect DOI: https://doi.org/10.1126/sciadv.adz0460 이번 연구는 과학기술정보통신부와 한국연구재단의 지원을 받아 수행됐다.
배터리는 스마트폰과 전기차 등 현대 사회의 필수 기술이지만, 화재·폭발 위험과 높은 비용이라는 한계를 안고 있다. 이를 해결할 대안으로 전고체 배터리가 주목받아 왔지만, 안전성·성능·가격을 동시에 만족시키기는 쉽지 않았다. 한국 연구진이 비싼 금속을 추가하지 않고도 구조 설계만으로 전고체 배터리 성능을 단번에 수 배 끌어올리는 데 성공했다. 우리 대학은 소재공학과 서동화 교수 연구팀이 서울대학교(총장 유홍림) 정성균 교수, 연세대학교(총장 윤동섭) 정윤석 교수, 동국대학교(총장 윤재웅) 남경완 교수 연구팀과의 공동 연구를 통해, 저비용 원료를 사용하면서도 폭발과 화재 위험이 낮고 성능이 우수한 전고체 배터리 핵심 소재 설계 방법을 개발했다고 7일 밝혔다. 일반 배터리는 액체 전해질 안에서 리튬 이온이 이동하는 반면, 전고체 배터리는 액체 대신 고체 전해질을 사용한다. 이 때문에 전고체 배터리는 더 안전하지만, 고체 안에서 리튬 이온이 빠르게 이동하도록 만들기 위해서는 값비싼 금속을 쓰거나 복잡한 제조 공정이 필요하다는 문제가 있었다. 연구팀은 전고체 전해질 내부에 리튬 이온이 원활하게 이동할 수 있는 통로를 만들기 위해 산소(O²⁻)와 황(S²⁻)과 같은 ‘이가 음이온’에 주목했다. 이가 음이온은 전해질 내부 구조의 기본 틀에 들어가 결정 구조를 변화시키는 역할을 한다. 연구팀은 저렴한 지르코늄(Zr) 기반 할라이드 전고체 전해질에 이가 음이온을 도입해 내부 구조를 정밀하게 조절하는 기술을 개발했다. 이 설계 원리는 ‘프레임워크 조절 메커니즘’으로, 전해질 내부에서 리튬 이온이 이동하는 통로를 넓히고 이동 과정에서 마주치는 장벽을 낮추는 방식이다. 이를 통해 리튬 이온 주변의 결합 환경과 결정 구조를 조절해, 이온이 더 빠르고 쉽게 이동하도록 했다. 연구팀은 이러한 구조 변화를 확인하기 위해 초고해상도 X-선 산란 분석, 상관거리함수(PDF) 분석, X선 흡수분광(XAS), 컴퓨터 기반 전자 구조 및 확산 모델링(DFT) 등 다양한 정밀 분석 기법을 활용해 원자 수준에서의 변화를 규명했다. 그 결과, 산소나 황을 도입한 전해질에서는 리튬 이온의 이동 성능이 기존 지르코늄 기반 전해질보다 2~4배 이상 향상된 것으로 나타났다. 이는 값싼 재료를 사용하고도 실제 전고체 배터리에 적용할 수 있는 수준의 성능을 구현했음을 의미한다. 구체적으로, 산소(O²⁻)를 도입한 전해질의 상온 이온전도도는 약 1.78 mS/cm, 황(S²⁻)을 도입한 전해질은 약 1.01 mS/cm로 측정됐다. 이온전도도는 전해질 안에서 리튬 이온이 얼마나 빠르고 원활하게 이동하는지를 나타내는 지표로, 수치가 클수록 배터리 성능이 우수함을 뜻하며, 1 mS/cm 이상이면 상온에서 실제 배터리에 적용하기에 충분한 수준으로 평가된다. 서동화 교수는 “이번 연구를 통해 값싼 원료로도 전고체 배터리의 비용과 성능 문제를 동시에 개선할 수 있는 설계 원리를 제시했다”며, “산업적 활용 가능성이 매우 크다”고 말했다. 제1저자인 김재승 연구원은 이번 연구가 전고체 배터리 소재 개발에서 ‘어떤 소재를 쓸 것인가’를 넘어 ‘어떻게 설계해야 하는가’에 대한 방향을 제시한 연구라고 말했다. 이번 연구는 KAIST 김재승 연구원과 동국대학교 한다슬 연구원이 공동 제1저자로 참여했으며, 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 2025년 11월 27일 자로 게재됐다. ※논문명: Divalent anion-driven framework regulation in Zr-based halide solid electrolytes for all-solid-state batteries, DOI: https://www.nature.com/articles/s41467-025-65702-2 이번 연구는 삼성전자 미래기술육성센터, 한국연구재단, 국가슈퍼컴퓨팅센터의 지원을 받아 수행됐다.
거대 인공지능(AI)을 위한 초고속 광컴퓨팅, 양자 암호 통신, 초고해상도 증강현실(AR) 디스플레이 등 미래 첨단 산업에서는 빛으로 정보를 처리하는 나노 레이저가 차세대 반도체의 핵심 소자로 주목받고 있다. 우리 대학 연구진이 머리카락보다 얇은 공간에서 빛으로 정보를 처리하는 나노 레이저를 반도체 칩 위에 고밀도로 배치할 수 있는 새로운 제작 기술을 제시했다. 우리 대학은 기계공학과 김지태 교수 연구팀이 POSTECH(총장 김성근) 노준석 교수 연구팀과의 공동 연구를 통해, 초고밀도 광집적회로의 핵심 소자인 ‘수직형 나노 레이저’를 만들 수 있는 초미세 3차원 프린팅 기술을 개발했다고 6일 밝혔다. 기존 반도체 제조 방식인 리소그래피 공정은 같은 구조를 대량 생산하는 데는 효과적이지만, 공정이 복잡하고 비용이 많이 들어 소자의 형태나 위치를 자유롭게 바꾸기 어렵다는 한계가 있었다. 또한 대부분의 기존 레이저는 기판 위에 눕혀진 수평 구조로 만들어져 공간을 많이 차지하고, 빛이 아래로 새어 나가 효율이 떨어지는 문제가 있었다. 연구팀은 이러한 문제를 해결하기 위해 빛을 효율적으로 만들어내는 차세대 반도체 소재인 ‘페로브스카이트’를 수직으로 쌓아 올리는 새로운 3D 프린팅 방식을 개발했다. 이 기술은 전압을 이용해 눈에 보이지 않을 만큼 작은 잉크 방울(아토리터, 10⁻¹⁸ L)을 정밀하게 제어하는 ‘초미세 전기유체 3D 프린팅’ 기술이다. 이를 통해 재료를 깎아내는 복잡한 공정 없이, 원하는 위치에 머리카락보다 훨씬 가는 기둥 모양의 나노 구조물을 수직으로 직접 인쇄하는 데 성공했다. 기술의 핵심은 이렇게 인쇄된 페로브스카이트 나노 구조물의 표면을 매우 매끄럽게 만들어 레이저 효율을 크게 높였다는 점이다. 연구팀은 프린팅 과정에 기체상 결정화 제어 기술을 결합해, 결정이 거의 하나로 정렬된 고품질 구조를 구현했다. 그 결과 빛의 손실이 적고 안정적으로 작동하는 ‘고효율 수직형 나노 레이저’를 구현할 수 있었다. 또한 나노 구조물의 높이를 조절해 레이저가 내는 빛의 색을 정밀하게 바꿀 수 있음을 입증했다. 이를 활용해 육안으로는 보이지 않지만 특수 장비로만 확인할 수 있는 레이저 보안 패턴을 제작했으며, 위조 방지 기술로서의 상용화 가능성도 확인했다. 김지태 교수는 “이번 기술은 복잡한 공정 없이 빛으로 계산하는 반도체를 칩 위에 직접 고밀도로 구현할 수 있게 한다”며, “초고속 광컴퓨팅과 차세대 보안 기술의 상용화를 앞당길 것”이라고 말했다. 이번 연구 결과는 기계공학과 스치 후(Shiqi Hu) 박사가 제 1 저자로 나노과학 분야 국제 권위 학술지 ACS Nano에 2025년 12월 6일 온라인 판으로 게재됐다. ※논문명: Nanoprinting with Crystal Engineering for Perovskite Lasers DOI: https://doi.org/10.1021/acsnano.5c16906 이번 연구는 과학기술정보통신부 우수신진연구(RS−2025-00556379), 중견연구자지원사업 (RS-2024-00356928), 이노코어(InnoCORE) AI 기반 지능형 설계-제조 통합 연구단(N10250154)의 지원으로 수행되었다.
횡문근융해증은 약물 복용 등으로 근육이 손상되면서, 그 영향이 신장 기능 저하와 급성 신부전으로 이어질 수 있는 질환이다. 그러나 근육과 신장이 인체 내에서 어떻게 서로 영향을 주며 동시에 손상되는지를 직접 관찰하는 데에는 한계가 있었다. 우리 대학 연구진이 이러한 장기 간 상호작용을 실험실 환경에서 정밀하게 재현할 수 있는 새로운 장치를 개발했다. 우리 대학은 기계공학과 전성윤 교수 연구팀이 기계공학과 심기동 교수팀, 분당서울대학교병원 김세중 교수와의 공동 연구를 통해, 약물로 인한 근육 손상이 신장 손상으로 이어지는 과정을 실험실에서 재현할 수 있는 ‘바이오 미세유체시스템(Biomicrofluidic system)’을 개발했다고 5일 밝혔다. *미세유체시스템: 아주 작은 칩 위에서 인체 장기 환경을 구현한 장치 이번 연구는 근육과 신장을 동시에 연결·분리할 수 있는 모듈형(조립형) 장기칩을 활용해, 약물 유발 근육 손상이 신장 손상으로 이어지는 인체 장기 간 연쇄 반응을 실험실에서 처음으로 정밀하게 재현했다는 점에서 의미가 크다. 연구팀은 실제 인체 환경과 유사한 조건을 구현하기 위해, 입체적으로 구현한 근육 조직과 근위세뇨관 상피세포(신장에서 핵심 역할을 하는 세포)를 하나의 작은 칩 위에서 연결할 수 있는 구조를 개발했다. 해당 시스템은 필요에 따라 장기 조직을 연결하거나 다시 분리할 수 있는 플러그-앤-소켓 방식의 모듈형 미세유체 칩이다. 작은 칩 위에서 실제 사람의 장기처럼 세포와 조직을 배양하고, 서로 영향을 주고받도록 설계됐다. 이 장치에서는 근육과 신장 조직을 각각 가장 적합한 조건에서 따로 배양한 뒤, 실험이 필요한 시점에만 연결해 장기 간 상호작용을 유도할 수 있다. 실험이 끝난 후에는 두 조직을 다시 분리해 각각의 변화를 독립적으로 분석할 수 있으며, 손상된 근육에서 나온 독성 물질이 신장에 미치는 영향을 수치로 확인할 수 있다는 점이 특징이다. 연구팀은 해당 플랫폼을 활용해 실제 임상에서 근육 손상을 유발하는 것으로 알려진 아토르바스타틴(고지혈증 치료제)과 페노피브레이트(중성지방 치료제)를 실험에 적용했다. 그 결과, 칩 위의 근육 조직에서는 근육이 힘을 내는 능력이 떨어지고 구조가 망가졌으며, 마이오글로빈*과 CK-MM** 등 근육 손상 정도를 보여주는 물질의 수치가 증가하는 등 횡문근융해증의 전형적인 변화가 관찰됐다. *마이오글로빈(Myoglobin): 근육 세포 안에 있는 단백질로 산소를 저장하는 역할을 하며, 근육이 손상되면 혈액이나 배양액으로 유출됨 **CK-MM (Creatine Kinase-MM): 근육에 많이 존재하는 효소로, 근육 세포가 파괴될수록 많이 검출됨 동시에 신장 조직에서는 정상적으로 살아 있는 세포 수가 감소하고 세포 사멸이 증가했으며, 급성 신손상이 발생할 때 증가하는 지표인 NGAL*과 KIM-1**의 발현도 유의미하게 증가했다. 특히 손상된 근육에서 나온 독성 물질이 신장 손상을 단계적으로 더욱 악화시키는 연쇄적인 손상 과정까지 함께 확인할 수 있었다. *NGAL: 신장 세포가 손상될 때 빠르게 증가하는 단백질 **KIM-1: 신장 세포, 특히 근위세뇨관이 손상될수록 많이 나타나는 단백질 전성윤 교수는 “이번 연구는 근육과 신장 사이에서 발생하는 상호작용과 독성 반응을 실제 인체와 유사하게 분석할 수 있는 기반을 마련했다”며, “이를 통해 앞으로 약물 부작용을 사전에 예측하고, 급성 신손상*이 발생하는 원인을 규명하며, 개인별 맞춤형 약물 안전성 평가로까지 확장할 수 있을 것으로 기대한다”고 말했다. * 급성 신손상: 신장이 짧은 시간 안에 갑자기 제 기능을 제대로 하지 못하게 되는 상태 김재상 박사가 제1저자로 참여한 이번 연구 성과는 국제 학술지 ‘어드밴스드 펑셔널 머티리어스(Advanced Functional Materials)’에 25년 11월 12일 자로 게재됐다. ※논문명: Implementation of Drug-Induced Rhabdomyolysis and Acute Kidney Injury in Microphysiological System, DOI: 10.1002/adfm.202513519 이번 연구는 과학기술정보통신부와 한국연구재단 등의 지원을 받아 수행됐다.
우리 대학 조천식 모빌리티 대학원 김인희 부교수가 한-아세안 교통 분야 협력 및 디지털화에 기여한 공로를 인정받아 지난 12월 31일 국토교통부 장관 표창을 수상했다. 김 교수는 지난 2024년부터 국토교통부 국제협력통상담당관실의 핵심 자문 역을 맡아, 대한민국과 아세안(ASEAN) 국가 간의 교통망 선진화를 위한 주요 국제 협력 사업을 성공적으로 이끌어왔다. 주요 업적수행 과제로는 ▲아세안 지역 내 공공교통 및 물류 디지털화 격차 분석 연구 ▲2026-2030 한-아세안 교통협력 로드맵 수립 등 두 가지가 꼽힌다. 김 교수는 이를 통해 아세안 국가들의 교통 디지털화 현황을 진단하고, 향후 5년간 한국과 아세안이 나아갈 전략적 협력 방향을 제시했다는 평을 받는다. 특히 김 교수는 지난 2년 동안 국토교통부 실무진과 함께 다수의 아세안 회원국을 직접 방문해 현지 교통 인프라를 점검하고, 각국 정부 관계자들과의 긴밀한 소통을 통해 국가 간 이해관계를 조정하는 등 실질적인 파트너십 구축에 앞장서 왔다. 김인희 교수는 "2026년에도 아세안 국가들의 교통 인프라 및 기술 고도화를 위한 선도적인 역할을 이어갈 예정"이라며, "앞으로도 한국의 선진 교통 기술이 아세안 지역에 성공적으로 뿌리내릴 수 있도록 연구와 협력에 매진하겠다"고 밝혔다.
우리 대학 이경진 석좌교수가 제67회 3·1문화상 수상자로 선정됐다. 학술상 자연과학부문 수상자인 이경진 석좌교수는 지난 20여년간 스핀트로닉스 연구에 매진하며 기존 학계의 통념을 넘어서는 거대 양자 스핀 펌핑 현상을 세계 최초로 발견했다. 그의 연구는 물리학 분야의 오랜 난제를 해결함과 동시에 차세대 반도체 기술 개발을 위한 새로운 이론적 토대를 제시한 성과로 평가받고 있으며, 세계적 석학으로서 물리학 발전에 기여한 점을 인정받았다. 3·1문화상은 숭고한 3·1운동 정신을 계승해 우리나라의 문화 향상과 학술·산업 발전에 기여한 인사를 포상하기 위해 1959년 창설됐으며, 1960년 3월1일 제1회 시상식을 거행했다. 이후 1966년 8월 재단법인 3·1문화재단 설립으로 이어진 공익 포상 제도다. 수상자에게는 상패와 메달, 상금 1억원을 수여되며, 시상식은 3월 1일 오전 10시 서울 중구 웨스틴 조선 호텔에서 열린다.
우리 대학 전기·전자공학부 석좌교수이자 파네시아 대표인 정명수 교수가 대한민국 과학기술인상 1월 수상자로 선정됐다. 대한민국 과학기술인상은 과학기술정보통신부와 한국연구재단이 최근 3년간 독창적인 연구 성과를 창출해 과학기술 발전에 크게 기여한 연구자를 매월 1명 선정해 과기정통부 장관상과 상금 1천만 원을 수여하는 상으로, 올해부터 기존 ‘이달의 과학기술인상’에서 명칭이 격상됐다. 정명수 교수는 모듈형 인공지능(AI) 데이터센터 아키텍처 설계 기술을 통해 AI 인프라 비용을 절감하고 효율을 높인 공로를 인정받았다. 기존 데이터센터는 CPU, GPU, AI 가속기, 메모리 비율이 고정돼 있어 활용에 한계가 있었으나, 정 교수는 필요에 따라 서로 다른 장치를 자유롭게 조합할 수 있는 구조를 제시했다. 또한 차세대 연결 표준인 컴퓨트익스프레스링크(CXL)를 기반으로 장치들을 분리·관리하는 저전력·고효율 링크 기술을 개발하고, 가속기 중심의 링크 기술과 고대역폭 메모리(HBM) 반도체 기술을 모듈형 AI 데이터센터 구조에 통합하는 방향을 제시했다. 정명수 교수는 “각 장치의 개별 성능뿐 아니라 이를 효율적으로 연결·활용할 수 있는 링크 기술의 지속적인 연구를 통해 AI 인프라 분야 국가 경쟁력 확보에 기여하고 싶다”고 말했다.
우리대학 전산학부 문수복 교수가 한국정보과학회 제41대 회장에 선출되어, 2026년 1월 1일에 취임하여, 앞으로 1년간 학회를 이끌게 되었다. 문수복 교수는 서울대학교 컴퓨터공학부(학사 및 석사), 미국 UMass Amherst(전산학 박사)를 졸업하고, 2003년부터 우리대학 전산학부 교수로 재직중이다. 문수복 교수는 “한국정보과학회가 걸어온 50년이 넘는 빛나는 역사 위에서, 이 학회의 첫 여성 회장으로 취임하게 된 것을 큰 영광으로 생각하며, 동시에 막중한 책임을 맡게 되었음을 깊이 새기고 있다. 지난 반세기 동안 한국 정보과학의 토대를 세워 오신 선배 연구자 여러분의 헌신 위에서, 학회가 다음 세대 연구자들과 함께 더 넓은 세계로 나아갈 수 있도록 최선을 다하겠다. 또한, 국내 연구진들의 해외 학술 활동이 크게 증가하고 있는 현실 속에서, 학문적 경쟁력을 더 잘 뒷받침하는 학회가 될 수 있도록, 그 역할과 기능에 집중하겠다."라고 밝혔다. 한국정보과학회는 1973년도에 창립된 국내 ‘컴퓨터 및 소프트웨어 분야’를 대표하는 학술단체로서, 총 회원 수는 4만 7백여 명에 이른다.
우리 대학 화학과 박윤수 교수가 신진 과학자를 발굴·격려하기 위해 올해 처음 제정된 제1회 세종과학상 수상자로 선정됐다. 사단법인 과학의전당이 주관하는 세종과학상은 물리, 화학, 생명과학, 생리·의학 분야에서 탁월한 연구 성과를 거둔 젊은 과학자를 대상으로 수여되는 상으로 박윤수 교수는 화학 분야 수상자로 선정됐다. 박 교수는 전이금속을 활용한 유기합성방법론을 연구하는 유기화학자로, 기존 합성법과 근본적으로 차별화되는 ‘단일원자 편집기술’을 개발해 신약개발 및 재료화학 연구 전반에 혁신적인 가능성을 제시한 점을 높이 평가받았다. 해당 기술은 분자의 특정 원자만을 정밀하게 변환할 수 있어 차세대 의약 및 기능성 소재 개발 분야에서 큰 파급 효과가 기대된다. 현재 33세의 젊은 과학자인 박 교수는 KAIST 화학과에서 학사 및 석·박사 학위를 취득했으며, 미국 프린스턴대학교 박사후연구원을 거쳐 2022년 KAIST 화학과에 임용됐다. 이후 화학반응 개발과 응용 분야에서 독보적인 연구 성과를 이어가며, 국제 저명 학술 무대에서 활발히 활동해 왔다. 세종과학상 수상자에게는 상금 1억 원이 수여되며, 시상식은 오는 다음 달 2일 웨스틴조선호텔 서울에서 열린다.
//www.yna.co.kr/view/AKR20251211155600017?input=1195m
2025.12.12
//www.joongang.co.kr/article/25387598
2025.12.05
//www.donga.com/news/Opinion/article/all/20251126/132850780/2
2025.11.27
//news.unn.net/news/articleView.html?idxno=586622
2025.11.25
https://www.hankyung.com/article/2025100114981
2025.10.03